Закон неуничтожимости информации и корреляционное исчисление 22 Парадоксы времени 27 Парадоксы пространства 31


Необходимость пересмотра оснований математики



страница5/12
Дата30.07.2018
Размер0.63 Mb.
ТипЗакон
1   2   3   4   5   6   7   8   9   ...   12
Необходимость пересмотра оснований математики

"Диалектические основы математики" Лосев начинает с рассмотрения числа как "факта духовной культуры":

"Ставится задание: рассмотреть число как объективно-социальную действительность, но так, чтобы видны были все логические, сознательные и вообще смысловые скрепы этой объективной действительности. Если бы задание это было выполнимо, мы получили бы число (а значит, и математику) не как предметный продукт мышления и не как физический продукт природы, но как продукт саморефлектирования духа, как факт духовной культуры"[5].

Далее он переходит к рассмотрению структуры математики в целом:

"Задача эта трудна и многосложна, и тут необходим тот союз философии и математики, который так част в интуитивных глубинах у настоящих философов и математиков и который так редок у тех, кому суждено повторять и распространять философские и математические идеи, но не создавать их впервые. Вчитываясь в Лейбница, часто не знаешь, философская или чисто математическая интуиция им руководила. Это, конечно, ни то и ни другое, это – то первичное, рождающее лоно идеальной мысли, где философия и математика слиты пока еще в одно нерасчленимое целое. И, когда читаешь Кантора, тоже удивляешься тому, как иная философская идея, вычитанная им у какого-нибудь Фомы Аквинского, чувствуется, именно чувствуется и ощущается, а не просто понимается – чисто математически и арифметически… Вдумчивый наблюдатель обнаружит, что на глубине у этого гениального человека философия и математика слиты до полной неразличимости и являются единой и целостной могучей интуицией, способной оплодотворить и определить собою как чисто философскую, так и чисто математическую систему.

Философия математики должна вернуть нас к этому глубинному союзу философии и математики. Она, философия математики, должна в расчлененном и яснейшем виде показать, конструировать то нерасчлененное и неясное, что лежит в основе общей философско-математической интуиции, отказавшись как от формализма и пустоты, техницизма математических доказательств, так и отвлеченности и слишком большой общности философских теорий"[5].

Лосев был убежден, что современная ему математика "Нового времени", ограничив область своего применения лишь миром вещественным, не способна адекватно представить даже этот вещественный мир. Фактически она занимается не Реальностью, а миром порожденных ею самой иллюзорных умственных конструкций. Эта "иллюзорная математика", доведенная до крайних пределов иллюзорности в интуиционистской модели Брауэра, оказалась непригодной для моделирования процессов запоминания и воспроизведения информации.

Для того, чтобы математика отражала не только изменения, происходящие на трехмерной поверхности видимого мира, но и реальное взаимодействие видимого и невидимого миров, осуществляющееся во всем объеме мирового пространства – надо не пытаться редуцировать это взаимодействие к господствующим ныне математическим методам, а создать адекватную ему математическую модель.

Необходима переоценка самих оснований математики, ее аксиоматики. К этой переоценке и приступает Лосев в "Диалектических основах математики". Он пишет:

"… Общей особенностью современной математической аксиоматики является ее формалистический и антидиалектический характер. Выставляется ряд аксиом; и – неизвестно почему, собственно взяты эти аксиомы, а не другие и откуда можно почерпнуть гарантию полноты этого списка аксиом. Такая беспомощность вполне характерна, напр., для знаменитого Гильберта, которого математики почему-то особенно превозносят именно в этом отношении. Мы читаем его перечисление аксиом – и совершенно не знаем, откуда он их получил, как к ним логически пришел и действительно ли все аксиомы тут перечислены. Ведь система аксиом должна быть такова, чтобы была действительно ясна ее полнота и логическая завершенность. У Гильберта же мы можем в крайнем случае сказать только то, что каждая из данных аксиом имеет в математике действительное значение, но совсем не можем сказать, что тут исчерпана вся аксиоматика, и не знаем, где гарантия ее логической законченности"[5].

Критика Лосевым современных ему аксиоматических систем совпала во времени с так называемой "Гёделевской революцией" в основаниях математики. В 1931 году австрийский ученый Курт Гёдель доказал существование высказываний, не выводимых дедуктивным путём из аксиом арифметики. Позже было установлено, что выводимые высказывания составляют лишь неизмеримо малую часть всех высказываний, истинность подавляющего числа которых нельзя ни доказать, ни опровергнуть.

Произведенная Куртом Гёделем революция навсегда покончила с наивной уверенностью во всеохватности формального мышления, свойственной тогда большинству "научного сообщества", показав, что попытка вывести главнейшие истины рациональным путем приводит к осознанию разумом своих границ. А.Н. Паршин так сформулировал значение теоремы Гёделя не только для математики, но и для человеческой культуры вообще: "Если бы не было теоремы Гёделя, то жизнь не только не была бы приятнее, её просто не было бы"… Теорема Гёделя показывает не просто ограниченность логических средств, она говорит о каком-то фундаментальном, глубинном свойстве мышления и, может быть, жизни вообще. Если мы что-то хотим понять в мышлении человека, то это возможно не вопреки тереме Гёделя, а благодаря ей" [2].

Если до 30-х годов XX столетия можно было еще тешить себя иллюзиями о возможности формализации математики, не учитывающей абсурдности самих оснований формальной логики, то после гёделевской революции эти иллюзии растаяли.

Именно выход за пределы обыденного опыта и переход к "логике абсурда", как это ни парадоксально – дают возможность приобрести точные знания о реальном мире. "Лжеименной разум" сменяется разумом истинным.

Мысль Тертуллиана [7]: "Et mortuus est dei filius; prorsus credibile est, quia ineptum est. Et sepultus resurrexit; certum est, quia impossibile" ("И умер Сын Божий — это совершенно достоверно, ибо нелепо; и, погребенный, воскрес — это несомненно, ибо невозможно") может быть даже усилена, так как "безумны" и "невозможны" не только смерть и Воскресение Бога, но и само существование Его и сотворенного Им мира! Невозможность преодолевается чудом!

Знаменитые афоризмы Лосева: "Верую, потому что максимально разумно" и "Вера есть требование максимально развитого разума", обычно понимаемые, как полемика с Тертуллианом, – не только не противоречат мысли Тертуллиана, но последовательно продолжают эту мысль, полностью раскрывая заложенный в ней глубинный смысл.

Сама логика приводит к осознанию необходимости новой аксиоматики, основанной на понимании принципиальной неполноты рационального сознания.

Квантовая теория и теорема Гёделя представляются поверхностному взору никак не связанными друг с другом интеллектуальными построениями, относящимися к различным областям знания. На самом деле они говорят об одном и том же – о невозможности понять мир, ограничиваясь рассмотрением лишь "сиюминутных" событий, происходящих на трехмерной поверхности Гиперсферы, считая все остальные события либо "уже отошедшими в прошлое", либо "еще не наступившими". Это подобно тому, как если бы изучение реального исторического события подменялось изучением кинопленки, на которую это событие было заснято, а смена кадров этой кинопленки выдавалась бы за реальное течение этого события. При этом утверждалось бы, будто само событие, если и имело место, то "кануло в Лету", а единственное, что от него осталось – это как раз предъявленная кинопленка, а когда кинопленка сгорит, то от него не останется совершенно ничего, и будет совершенно безразлично, происходило оно вообще когда-нибудь, или нет!



  1. Каталог: history -> losev
    history -> Лекция по истории античной философии n 1Философия древних ионийцев. Пифагор и пифагорейский союз. Гераклит Темный, его учение о пюросе(огне) и логосе. Элейское учение об онтосе(бытии), истине и мнениии, апории Зенона Элейского
    history -> А. Г. Свинаренко
    history -> Рабочая программа дисциплины " Основы философии"
    history -> Методические указания к курсу «История теоретической социологии»
    history -> М. В. Балахнина а. И. Давыдов а. Ю. Дергачев история и политология: Пособие для студентов для подготовки к тестированию Новосибирск 2012
    history -> Современная научно-философская картина мира
    losev -> Виктор Борисович Кудрин ученый-исследователь Victor B. Kudrin


    Поделитесь с Вашими друзьями:
1   2   3   4   5   6   7   8   9   ...   12


База данных защищена авторским правом ©znate.ru 2019
обратиться к администрации

    Главная страница