Введение всеобщее понятие логики



Pdf просмотр
страница534/558
Дата17.08.2018
Размер2.43 Mb.
ТипРеферат
1   ...   530   531   532   533   534   535   536   537   ...   558
правильное понимание дела, точно оценив и стихию, и природу своей науки;
доказательство этой аксиомы нужно было бы вести, исходя из понятия параллельных линий; но такой способ доказательства так же мало относится к его науке, как и дедукция выставляемых им дефиниций, аксиом и вообще его предмета - самого пространства и ближайших его определений, измерений; так как такую дедукцию можно вести только из понятия, а понятие находится вне того, что составляет специфику Евклидовой науки, то указанные дефиниции,
аксиомы и т. д. необходимо суть для этой науки предпосылки, нечто относительно первое.
Аксиомы - чтобы сказать по этому поводу несколько слов и о них - принадлежат к тому же классу. Их обычно неверно принимают за нечто абсолютно первое, как если бы они сами собой не нуждались ни в каком доказательстве.
Если бы это было так на самом деле, то они были бы чистыми тавтологиями,
ведь только в абстрактном. тождестве нет никакой разности, следовательно, не требуется и никакого опосредствования. Но если аксиомы суть нечто большее,
чем тавтологии, то они положения, [взятые] из какой-то-другой науки, так как для той науки, которой они служат в качестве аксиом, они должны быть предпосылками. Они поэтому, собственно говоря, теоремы, и притом большей частью из логики. Аксиомы геометрии и суть подобного рода леммы, логические положения, которые, впрочем, близки к тавтологиям потому, что они касаются лишь величины и ввиду этого качественные различия в них стерты; о главной аксиоме, о чисто количественном умозаключении, речь шла выше. - Поэтому рассматриваемые сами по себе аксиомы точно так же нуждаются в доказательстве, как и дефиниции и членения, и их не делают теоремами только потому, что они как относительно первые принимаются определенной точкой зрения за предпосылки.
Относительно содержания научного положения следует теперь провести то более точное различие, что так как это содержание находится в соотношении определенностей реальности понятия, то эти соотношения могут быть либо в той или другой мере недостаточными и отдельными отношениями предмета, либо же таким отношением, которое охватывает все содержание реальности и выражает его определенное соотношение. Но единство исчерпывающих определенностей содержания равно понятию; положение, содержащее единство, само поэтому есть опять-таки дефиниция, но такая, которая выражает не только непосредственно воспринятое понятие, но понятие, развернутое в свои определенные, реальные различия, иначе говоря, полностью осуществленное понятие. И то и другое вместе представляет поэтому идею.
Если более тщательно сравнить между собой положения какой-нибудь синтетической науки, и в особенности геометрии, то обнаружится следующее различие: одни теоремы этой науки содержат лишь отдельные отношения предмета, другие же - такие отношения, в которых выражена исчерпывающая определенность предмета. Весьма поверхностно рассматривать все положения как равноценные на том основании, что-де вообще каждое из них содержит некоторую истину и что они в формальной процедуре, в ходе доказательства одинаково существенны. Различие, касающееся содержания теорем, самым тесным образом связано с самой этой процедурой; некоторые дальнейшие замечания о ней послужат к тому, чтобы больше выяснить указанное различие, равно как и природу синтетического познания. Прежде всего [необходимо отметить следующее]: Евклидова геометрия, которая должна служить здесь примером как




Поделитесь с Вашими друзьями:
1   ...   530   531   532   533   534   535   536   537   ...   558


База данных защищена авторским правом ©znate.ru 2019
обратиться к администрации

    Главная страница