Введение всеобщее понятие логики



Pdf просмотр
страница187/558
Дата17.08.2018
Размер2.43 Mb.
ТипРеферат
1   ...   183   184   185   186   187   188   189   190   ...   558
собой совокупно, а если у них есть какая-либо общая пропорция, то в отдельности". - Для этой цели он сравнивает в фигурах, имеющих одинаковые основание и высоту, пропорции между линиями, проведенными параллельно основанию и на равном расстоянии от него; все такие линии некоторой фигуры имеют одинаковое определение и составляют всю ее площадь. Так Кавальери доказывает, например, и ту элементарную теорему, что параллелограммы,
имеющие одинаковую высоту, относятся между собой, как их основания; каждые две линии, проведенные в обеих фигурах на одинаковом расстоянии от основания и параллельные ему, относятся между собой, как основания этих фигур;
следовательно, так же относятся между собой и целые фигуры. В
действительности линии не составляют площади фигуры как непрерывной, а составляют эту площадь, поскольку она должна быть определена арифметически;
линейное - это тот ее элемент, единственно лишь посредством которого должна быть постигнута ее определенность.
Это заставляет нас поразмыслите о различии [в мнениях] относительно того,
в чем состоит определенность какой-нибудь фигуры, а именно эта определенность или такова, какова в данном случае высота фигуры, или она внешняя граница. Поскольку она дана как внешняя граница, допускают, что непрерывность фигуры, так сказать, следует равенству или отношению границы;
например, равенство совпадающих фигур основывается на совпадении ограничивающих их линий. Но в параллелограммах с одинаковой высотой и основанием лишь последняя определенность есть внешняя граница. Высота, а не вообще параллельность, на которой основано второе главное определение фигур,
их отношение, прибавляет к внешней границе второй принцип определения.
Эвклидово доказательство равенства параллелограммов, имеющих одинаковую высоту и основание, приводит их к треугольникам, к внешне ограниченным непрерывным; в доказательстве же Кавальери, и прежде всего в доказательстве пропорциональности параллелограммов, граница есть вообще определенность величины, как таковая, обнаруживающаяся в любой паре линий, проведенных в обеих фигурах на одинаковом расстоянии. Эти равные или находящиеся в равном отношении к основанию линии, взятые совокупно, дают находящиеся в равном отношении фигуры. Представление об агрегате линий противоречит непрерывности фигуры; но рассмотрение линий полностью исчерпывает ту определенность, о которой идет речь. Кавальери часто отвечает на то возражение, будто представление о неделимых приводит к тому, что должны быть сравнимы между собой бесконечные по численности линии или поверхности (Geom., lib. II,
prop. I, schol.); он проводит правильное различие, говоря, что он сравнивает между собой не их численность, которую мы не знаем, правильнее сказать, не их численность, которая, как мы отметили выше, есть пустое вспомогательное представление, а лишь величину, т. е. количественную определенность, как таковую, которая равна занимаемому этими линиями пространству; так как последнее заключено в границах, то и эта его величина заключена в тех же границах; непрерывное, говорит он, есть не что иное, как сами неделимые;
если бы оно было нечто находящееся вне их, то оно было бы несравнимо; но было бы нелепо сказать, что ограниченные непрерывные несравнимы между собой.
Как видим, Кавальери хочет провести различие между тем, чти принадлежит к внешнему существованию непрерывного, и тем, в чем состоит его определенность и что единственно и следует выделять для сравнения и в целях получения теорем о нем. Категорий, которыми он пользуется при этом, говоря, что непрерывное сложено из неделимых или состоит из них и т. п., конечно,




Поделитесь с Вашими друзьями:
1   ...   183   184   185   186   187   188   189   190   ...   558


База данных защищена авторским правом ©znate.ru 2019
обратиться к администрации

    Главная страница