Введение всеобщее понятие логики



Pdf просмотр
страница171/558
Дата17.08.2018
Размер2.43 Mb.
ТипРеферат
1   ...   167   168   169   170   171   172   173   174   ...   558
качеством, степеннбе определение; более детальные видоизменения, например то, что это происходит уже и с плоскими кривыми, мы можем оставить без рассмотрения, поскольку здесь дело идет прежде всего о различии лишь в общем виде. Тем самым возникает также потребность переходить от более высокого степенного определения к низшему
Видимость случайности, представляемая дифференциальным исчислением в разном его применении, упростилась бы уже пониманием природы сфер применения и специфической потребности и условия этого применения. Но в самих этих сферах важно далее знать, между какими частями предметов математической задачи имеет место такое отношение, которое специфически полагается дифференциальным исчислением. Пока что мы сразу должны заметить, что при этом нужно принимать во внимание двоякого рода отношения. Действие понижения степени уравнения, рассматриваемое со стороны производных функций его переменных величин, дает результат, который в самом себе поистине есть уже не уравнение, а отношение. Это отношение составляет предмет собственно дифференциального исчисления. Но именно поэтому, во-вторых, здесь имеется также отношение самогб более высокого степеннбго определения
(первоначального уравнения) к низшему (производной функции). Это второе отношение мы должны оставить пока без внимания; впоследствии оно окажется предметом, характерным для интегрального исчисления.
Рассмотрим сначала первое отношение и для определения момента, в котором заключается интерес действия (это определение должно быть заимствовано из сферы так называемого применения), возьмем простейший пример кривых,
определяемых уравнением второй степени. Как известно, отношение координат в степеннбм определении дано непосредственно уравнением. Следствиями основного определения являются определения других связанных с координатами прямых линий: касательной, подкасательной, нормали и т. п. Но уравнения между этими линиями и координатами суть линейные уравнения; те целые, в качестве частей которых определены указанные линии, - это прямоугольные треугольники,
составленные прямыми линиями. Переход от основного уравнения, содержащего определение, к этим линейным уравнениям содержит указанный выше переход от первоначальной функции, т. е. от той функции, которая есть уравнение к производной функции, которая есть отношение и притом отношение между теми или иными содержащимися в кривой линиями. Связь между отношением этих линий и уравнением кривой и есть то, что требуется найти.
Небезынтересно отметить относительно истории [дифференциального исчисления ], что первые открыватели умели указать найденное ими решение лишь всецело эмпирически, не будучи в состоянии объяснить само действие,
оставшееся совершенно внешним. Я ограничиваюсь здесь указанием на Барроу,
учителя Ньютона. В своих Lect. opt. et geom., в которых он решает задачи высшей геометрии по методу неделимых, отличающемуся прежде всего от того,
что составляет особенность дифференциального исчисления, он излагает также свой метод определения касательных, "так как на этом настаивали его друзья"
(lect. X). Нужно прочесть у него самого, как он решает эту задачу, чтобы составить надлежащее представление о том, каким образом этот метод дан как




Поделитесь с Вашими друзьями:
1   ...   167   168   169   170   171   172   173   174   ...   558


База данных защищена авторским правом ©znate.ru 2019
обратиться к администрации

    Главная страница