Учебное пособие для аспирантов



страница18/69
Дата01.01.2018
Размер1.93 Mb.
ТипУчебное пособие
1   ...   14   15   16   17   18   19   20   21   ...   69
Теория клетки была создана немецкими учеными М. Шлейденом и Г. Шванном в 1838—1839 гг. Клеточная теория доказала внутреннее единство всего живого и указала на единство происхождения и развития всех живых существ. Она утвердила общность происхождения, а также единство строения и развития растений и животных.

Открытие в 40-х гг. ХIХ в. закона сохранения и превращения энергии (Ю. Майер, Д. Джоуль, Э. Лени) показало, что признававшиеся ранее изолированными так называемые «силы» — теплота, свет, электричество, магнетизм и т. п. — взаимосвязаны, переходят при определенных условиях одна в другую и представляют собой лишь различные формы одного и того же движения в природе. Энергия, как общая количественная мера различных форм движения материи, не возникает из ничего и не исчезнет, а может только переходить из одной формы в другую.



Теория Ч. Дарвина окончательно была оформлена в его главном труде «Происхождение видов путем естественного отбора» (1859). Эта теория показала, что растительные и животные организмы (включая человека) — не богом созданы, а являются результатом длительного естественного развития (эволюции) органического мира, ведут свое начало от немногих простейших существ, которые, в свою очередь, произошли от неживой природы. Тем самым были найдены материальные факторы и причины эволюции — наследственность и изменчивость — и движущие факторы эволюции — естественный отбор для организмов, живущих в «дикой» природе, и искусственный отбор для разводимых человеком домашних животных и культурных растений. Впоследствии теорию Дарвина подтвердила генетика, показав механизм изменений, на основе которых и способна работать теория естественного отбора. В середине XX в., особенно в связи с открытием в 1953 г. Ф. Криком и Дж. Уотсоном структуры ДНК, сформировалась так называемая синтетическая теория эволюции, объединившая классический дарвинизм и достижения генетики.

32. Какова сущность революции в естествознании конца XIX — начала XX в., открывшей период неклассической науки?

Как было выше сказано, классическое естествознание XVII—XVIII вв. стремилось объяснить причины всех явлений (включая социальные) на основе законов механики Ньютона. В XIX в. стало очевидным, что законы ньютоновской механики уже не могли играть роли универсальных законов природы. На эту роль претендовали законы электромагнитных явлений. Была создана (Фарадей, Максвелл и др.) электромагнитная картина мира. Однако в результате новых экспериментальных открытий в области строения вещества в конце

XIX — начале XX в. обнаруживалось множество непримиримых противоречий между электромагнитной картиной мира и опытными фактами. Это подтвердил «каскад» научных открытий.

В 1895—1896 гг. были открыты лучи Рентгена, радиоактивность (Беккерелъ), радий (М. и П. Кюри) и др. В 1897 г. английский физик Дж. Томсон открыл первую элементарную частицу — электрон и понял, что электроны являются составными частями атомов всех веществ. Он предложил новую (электромагнитную) модель атомов, но она просуществовала недолго.

Немецкий физик М. Планк в 1900 г. ввел квант действия (постоянная Планка) и, исходя из идеи квантов, вывел закон излучения, названный его именем. Было установлено, что испускание и поглощение электромагнитного излучения происходит дискретно, определенными конечными порциями (квантами). Квантовая теория Планка вошла в противоречие с теорией электродинамики Максвелла. Возникли два несовместимых представления о материи: или она абсолютно непрерывна, или она состоит из дискретных частиц. Названные открытия опровергли представления об атоме, как последнем, неделимом «первичном кирпичике» мироздания («материя исчезла»).

В 1911 г. английский физик Э. Резерфорд в экспериментах обнаружил, что в атомах существуют ядра, положительно заряженные частицы, размер которых очень мал по сравнению с размерами атомов, в которых сосредоточена почти вся масса атома. Он предложил планетарную модель атома: вокруг тяжелого положительно заряженного ядра вращаются электроны. Резерфорд открыл α- и β-лучи, предсказал существование нейтрона. Но планетарная модель оказалась несовместимой с электродинамикой Максвелла.

«Беспокойство и смятение», возникшие в связи с этим в физике, «усугубил» Я. Бор, предложивший на базе идеи Резерфорда и квантовой теории Планка свою модель атома (1913). Он предполагал, что электроны, вращающиеся вокруг ядра по нескольким стационарным орбитам, вопреки законам электродинамики не излучают энергии. Электрон излучает ее порциями лишь при перескакивании с одной орбиты на другую. Причем, при переходе электрона на более далекую от ядра орбиту происходит увеличение энергии атома, и наоборот. Будучи исправлением и дополнением модели Резерфорда, модель Н. Бора вошла в историю атомной физики как квантовая модель атома Резерфорда—Бора.

Весьма ощутимый «подрыв» классического естествознания был осуществлен А. Эйнштейном, создавшим сначала специальную (1905), а затем и общую (1916) теорию относительности. В целом его теория основывалась на том, что в отличие от механики Ньютона, пространство и время не абсолютны. Они органически связаны с материей, движением и между собой. Сам Эйнштейн суть теории относительности в популярной форме выразил так: «Раньше полагали, что если бы из Вселенной исчезла вся материя, то пространство и время сохранились бы, теория относительности утверждает, что вместе с материей исчезли бы пространство и время». При этом четырехмерное пространство-время, в котором отсутствуют силы тяготения, подчиняется соотношениям неевклидовой геометрии.

Таким образом, теория относительности показала неразрывную связь между пространством и временем (она выражена в едином понятии пространственно-временного интервала), а также между материальным движением, с одной стороны, и его пространственно-временными формами существования — с другой. Определение пространственно-временных свойств в зависимости от особенностей материального движения («замедление» времени, «искривление» пространства) выявило ограниченность представлений классической физики об «абсолютном» пространстве и времени, неправомерность их обособления от движущейся материи.

В 1924 г. было сделано еще одно крупное научное открытие. Французский физик Луи де Бройль высказал гипотезу о том, что частице материи присущи и свойства волны (непрерывность), и дискретность (квантовость). Тогда, отмечал автор гипотезы, становилась понятной теория Бора. Вскоре, уже в 1925—1930 гг. эта гипотеза была подтверждена экспериментально в работах Шредингера, Гейзенберга, Борна и других физиков. Это означало превращение гипотезы де Бройля в фундаментальную физическую теорию — квантовую механику. Таким образом, был открыт важнейший закон природы, согласно которому все материальные микрообъекты обладают как корпускулярными, так и волновыми свойствами.

Один из создателей квантовой механики, немецкий физик В. Гейзенберг сформулировал соотношение неопределенностей (1927). Этот принцип устанавливает невозможность — вследствие противоречивой, корпускулярно-волновой природы микрообъектов — одновременно точного определения их координаты и импульса (количества движения). Принцип неопределенности стал одним из фундаментальных принципов квантовой механики. В философско-методологическом отношении данный принцип есть объективная характеристика статистических (а не динамических) закономерностей движения микрочастиц, связанная с их корпускулярно-волновой природой. Принцип неопределенностей не «отменяет» причинность (она никуда не «исчезает»), а выражает ее в специфической форме — в форме статистических закономерностей и вероятностных зависимостей.

Все вышеназванные научные открытия кардинально изменили представление о мире и его законах, показали ограниченность классической механики. Последняя, разумеется, не исчезла, но обрела четкую сферу применения своих принципов — для характеристики медленных движений и больших масс объектов мира.

33. Какие философско-методологические выводы можно сделать из достижений неклассического естествознания?

В нашу задачу не входит подробный анализ величайших достижений естествознания неклассического периода. Укажем лишь некоторые важнейшие философско-методологические выводы из них.

1. Возрастание роли философии в развитии естествознания и других наук. Это обстоятельство всегда подчеркивали настоящие творцы науки. Так, М. Бори говорил, что философская сторона науки интересовала его больше, чем специальные результаты. И это не случайно, ибо работа физика-теоретика «...теснейшим образом переплетается с философией и что без серьезного знания философской литературы его работа будет впустую»1. Весь вопрос, однако, в том, какой именно философии ученый отдает предпочтение.

2. Сближение объекта и субъекта познания, зависимость знания от применяемых субъектом методов и средств его получения. Идеалом научного познания действительности в XVIII—XIX вв. было • полное устранение познающего субъекта из научной картины мира, изображение мира «самого по себе», независимо от средств и способов, которые применялись при получении необходимых для его описания сведений. Естествознание XX в. показало неотрывность субъекта, исследователя от объекта, зависимость знания от методов и средств его получения. Иначе говоря, картина объективного мира определяется не только свойствами самого мира, но и характеристиками субъекта познания, его концептуальными, методологическими и иными элементами, его активностью (которая тем больше, чем сложнее объект).

Развитие науки показало, что исключить субъективное вообще из познания полностью невозможно, даже там, где «Я», субъект играет крайне незначительную роль. С появлением квантовой механики возникла «философская проблема, трудность которой состоит в том, что нужно говорить о состоянии объективного мира, при условии, что это состояние зависит от того, что делает наблюдатель»2. В результате существовавшее долгое время представление о материальном мире как о некоем «сугубо объективном», независимом ни от какого наблюдения, оказалось сильно упрощенным. На деле практически невозможно при построении теории полностью отвлечься от человека и его вмешательства в природу, тем более в общественные процессы.

А это значит, что без активной деятельности субъекта получение истинного) образа предмета невозможно. Более того, мера объективности познания прямо пропорциональна мере исторической активности субъекта. Однако последнюю нельзя абсолютизировать, так же как и пытаться «устранить» из познания субъективный момент якобы «в угоду» объективному. Недооценка, а тем более полное игнорирование творческой активности субъекта в познании, стремление «изгнать» из процесса познания эту активность закрывают дорогу к истине, к объективному отражению реальности.

3. Укрепление и расширение идеи единства природы, повышение роли целостного и субстанциального подходов. Стремление выйти из тех или иных односторонностей, выявить новые пути понимания целостной структуры мира — важная особенность научного знания. Так, сложная организация биологических или социальных систем немыслима без взаимодействия ее частей и структур — без целостности. Последняя имеет качественное своеобразие на каждом из структурных уровней развития материи. Развитие атомной физики показало, в частности, что объекты, называвшиеся раньше элементарными частицами, должны сегодня рассматриваться как сложные многоэлементные системы. При этом «набор» элементарных частиц отнюдь не ограничивается теми частицами, существование которых доказано на опыте.

Субстанциальный подход, т. е. стремление свести все изменчивое многообразие явлений к единому основанию, найти их «первосубстанцию», — важная особенность науки. Попытки достигнуть единого понимания, исходящего из единого основания, намерение охватить единым взором крайне разнородные явления и дать им единообразное объяснение не беспочвенны и не умозрительны. Так, физика исходит из того, что «...в конечном счете, природа устроена единообразно и что все явления подчиняются единообразным законам. А это означает, что должна существовать возможность найти в конце концов единую структуру, лежащую в основе разных физических областей»3.

История естествознания — это история попыток объяснить разнородные явления из единого основания. Сейчас стремление к единству стало главной тенденцией современной теоретической физики, где фундаментальной задачей является построение единой теории всех взаимодействий, известных сегодня: электромагнитного, слабого, сильного и гравитационного. Общепризнанной теории Великого объединения пока нет. Однако «Теория всего» в широком смысле не может быть ограничена лишь физическими явлениями. И это хорошо понимают широко мыслящие физики.

4. Формирование нового образа детерминизма и его «ядра» — причинности. История познания показала, что детерминизм есть целостное формообразование и его нельзя сводить к какой-либо одной из его форм или видов. Классическая физика, как известно, основывалась на механическом понимании причинности («лапласовский детерминизм»). Становление квантовой механики выявило неприменимость здесь причинности в ее механической форме. Это было связано с признанием фундаментальной значимости нового класса теорий — статистических, основанных на вероятностных представлениях. Тот факт, что статистические теории включают в себя неоднозначность и неопределенность, некоторыми философами и учеными был истолкован как крах детерминизма вообще, «исчезновение причинности».

В основе данного истолкования лежал софистический прием: отождествление одной из форм причинности — механистического детерминизма — с детерминизмом и причинностью вообще. При этом причина понималась как чисто внешняя сила, воздействующая на пассивный объект, абсолютизировалась ее низшая — механическая — форма, причинность как таковая смешивалась с «непререкаемой предсказуемостью».

Как доказывает современная физика, формой выражения причинности в области атомных объектов является вероятность, поскольку вследствие сложности протекающих здесь процессов (двойственный, корпускулярно-волновой характер частиц, влияние на них приборов и т. д.) возможно определить лишь движение большой совокупности частиц, дать их усредненную характеристику, а о движении отдельной частицы можно говорить лишь в плане большей или меньшей вероятности.

Поведение микрообъектов подчиняется не механико-динамическим, а статистическим закономерностям, но это не значит, что принцип причинности здесь не действует. В квантовой физике «исчезает» не причинность как таковая, а лишь традиционная ее интерпретация, отождествляющая ее с механическим детерминизмом как однозначной предсказуемостью единичных явлений.

5. Глубокое внедрение в естествознание противоречия и как существенной характеристики его объектов, и как принципа их познания. Исследование физических явлений показало, что частица-волна — две дополнительные стороны единой сущности. Квантовая механика синтезирует эти понятия, поскольку она позволяет предсказать исход любого опыта, в котором проявляются как корпускулярные, так и волновые свойства частиц. Притом, проблема выбора в данных условиях между этими противоположностями постоянно воспроизводится в более глубокой и сложной форме. Таким образом, в квантовой механике все особенности микрообъекта можно понять только исходя из его корпускулярно-волновой природы. Иначе говоря, природа микрочастицы внутренне противоречива (есть диалектическое противоречие), и соответствующее понятие должно выражать это объективное противоречие. Иначе оно не будет адекватно отражать свой объект, так как он есть в себе, а стало быть, будет выражать лишь часть истины, а не всю ее в целом.

В ходе дальнейшего развития квантовых представлений было обнаружено, что в процессе объяснения загадок атомных явлений противоречия не исчезают, не «устраняются» из теории. Наоборот, происходит их нарастание и обострение. Это свидетельствовало не о слабости, а о силе новых теоретических представлений, которые предстали не как «логические» противоречия (путаница мысли), а как такие, которые имеют объективный характер, отражают реальные противоречия, присущие самим атомным явлениям.

Попытки осознать причину появления противоречивых образов, связанных с объектами микромира, привели Н. Бора к формулированию принципа дополнительности. Согласно этому принципу, для полного описания квантово-механических явлений необходимо применять два взаимоисключающих (дополнительных) набора классических понятий (например, частиц и волн). Только совокупность таких понятий дает исчерпывающую информацию об этих явлениях как целостных образованиях. Изучение взаимодополнительных явлений требует взаимоисключающих экспериментальных установок.

6. Определяющее значение статистических закономерностей по отношению к динамическим. В законах динамического типа предсказания имеют точно определенный, однозначный характер. Это было присуще классической физике, где, если мы знаем координаты и скорость материальной точки в известный момент времени и действующие на нее силы, можно предсказать ее будущую траекторию.

Законы же квантовой физики — это законы статистического характера, предсказания на их основе носят не достоверный, а лишь вероятностный характер. «Квантовая физика отказывается от индивидуальных законов, элементарных частиц и устанавливает непосредственно статистические законы, управляющие совокупностями. На базе квантовой физики невозможно описать положение и скорость элементарной частицы или предсказать ее будущий путь, как это было в классической физике. Квантовая физика имеет дело только с совокупностями»1. Законы статистического характера являются основной характеристикой современной квантовой физики. Поэтому метод, применяемый для рассмотрения движения планет, здесь практически бесполезен и должен уступить место статистическому методу, законам, управляющим изменениями вероятности во времени.

Решающая роль статистических закономерностей в квантовой механике обусловлена как корпускулярно-волновым дуализмом, так и открытым Гейзенбергом соотношением неопределенностей. В свою очередь, последнее он считал специфическим случаем более общей ситуации дополнительности.

Огромный прогресс наших знаний о строении и эволюции материи, достигнутый естествознанием, начиная со второй половины XIX в., во многом и решающем обусловлен методами исследований, опирающимися на теорию вероятностей. Поэтому везде, где наука сталкивается со сложностью, с анализом сложноорганизованных систем, вероятность приобретает важнейшее значение.

7. Кардинальное изменение способа (стиля, структуры) мышления, вытеснение метафизики диалектикой в науке. Эту сторону, особенность неклассического естествознания подчеркивали выдающиеся его представители. Так, Гейзенберг неоднократно говорил о границах механического типа мышления, о недостаточности ньютоновского способа образования понятий, о радикальных изменениях в основах естественнонаучного мышления, указывал на важность требований об изменении структуры мышления. Он отмечал, что, введению нового, диалектического в своей сущности, мышления «нас вынуждает предмет, что сами явления, сама природа, а не какие-либо человеческие авторитеты заставляют нас изменить структуру мышления»2. Новая структура мышления позволяет добиться в науке большего, чем старая, т. е. новое оказывается более плодотворным.

Гейзенберг ставил вопрос о том, что наряду с обычной аристотелевской логикой, т. е. логикой повседневной жизни, существует неаристотелевская логика, которую он назвал квантовой. По аналогии с тем, что классическая физика содержится в квантовой в качестве предельного случая, «классическая, аристотелевская логика содержалась бы в квантовой в качестве предельного случая и во множестве рассуждений принципиально допускалось бы использование классической логики»3.

Выдающийся ученый сетовал на то, что «физики до сих пор не применяют квантовую логику систематически», и был твердо уверен в том, что квантовая логика представляет собой более общую логическую схему, чем аристотелевская.

Гейзенбергу в этом вопросе вторит французский философ и методолог науки Г. Башляр, который также ратует за введение в науку новой, неаристотелевской логики. Последнюю он рассматривает как логику, «вобравшую в себя движение», ставшую «живой» и развивающейся, в отличие от статичной аристотелевской логики. Процесс изменения в логике он связывает с изменениями в науке: статичный объект классической науки требовал статичной логики. Нестатичный (изменяющийся, развивающийся) объект неклассической науки приводит к необходимости введения движения в логику — как на уровне понятийного аппарата, так и логических связей.

8. Изменение представлений о механизме возникновения научной теории. (Об этой особенности см. вопрос 48.) Что касается постнеклассической науки, то ей далее будет специально посвящен разд. VII.

34. Как и когда происходит формирование науки как профессиональной деятельности?

Наука как профессиональная деятельность начинает формироваться в крупнейших странах Европы в период бурного подъема естествознания. Несмотря на большое значение великих прозрений античности, влияние науки арабов средневекового Востока, гениальных идей эпохи Возрождения, естествознание до XVII в. находилось в зачаточном состоянии. Представления о Вселенной ничем не отличались от тех, что были изложены еще в сочинениях Птолемея. А предложенная Коперником система мира была достоянием узкого круга лиц и воспринималась ими в большей степени как математическая гипотеза. Еще ничего не знали о законах движения тел.

У истоков науки как профессиональной деятельности стоит Френсис Бэкон (1561—1626), утверждавший, что достижения науки ничтожны и что она нуждается в великом обновлении. И чтобы создать новое естествознание, необходимы: правильный метод (индуктивно-экспериментальный), мудрое управление наукой (это задача правителей, которые должны создавать ученые учреждения, библиотеки, приобретать орудия и инструменты, обеспечивать людей науки вознаграждением, освобождающим их от забот и создающим свободное время для творчества) и общее согласие в работе, восполняющее недостаток сил одного человека.

Идеально организованный коллектив ученых («Дом Соломона») описал Бэкон в «Новой Атлантиде». Среди членов этого сообщества существует разделение труда: одни собирают сведения о различных опытах из книг, другие делают опыты, третьи обрабатывают данные опытов и составляют таблицы, а «истолкователи природы» из наблюдений и опытов выводят общие законы и причины. В «Доме Соломона» проводятся общие собрания всех его членов, обсуждаются рефераты, работы, выведенные законы и принципы, решается, какие открытия и опыты должны быть опубликованы. Для осуществления преемственности в «Доме» обязательно должны быть и молодые ученые. Посещая разные города, государства, ученые должны на основе изучення природы предсказывать неурожаи, бури, эпидемии, землетрясения и давать советы гражданам, как, по возможности, избежать этих бедствий.

Идея организованной, коллективной, государственной науки воплотилась в создании первых естественнонаучных обществ (или первых академий) в Европе. Уже начиная с эпохи Возрождения академии по типу платоновских возникали в разных городах Италии. Но чаще всего это были небольшие и недолговечные кружки любителей философии, теологии, литературы, искусства.

28 ноября 1660 г. в Лондоне 12 ученых на своем собрании составили «Меморандум», в котором записали о желании создать «Коллегию» для развития физико-математического экспериментального знания. Позднее она будет Названа Лондонским королевским обществом, научная программа которого предполагала развивать естествознание средством опытов. Вслед за Лондонским королевским обществом были созданы Парижская академия наук (1666 г.), Берлинская академия наук (1700 г.), Петербургская академия (1724 г.) и др.

В науке XVII столетия главной формой закрепления и трансляции знаний стала книга, в которой должны были излагаться основополагающие принципы и начала «природы вещей». Она выступала как базисом обучения, так и главным средством фиксации новых результатов исследования природы.

Перед ученым этого периода стояла весьма сложная задача. Ему недостаточно было получить какой-либо частный результат, в его обязанности входило построение целостной картины мироздания, которая должна найти свое выражение в достаточно объемном фолианте. Ученый обязан был не просто ставить отдельные опыты, но заниматься натурфилософией, соотносить свои знания с существующей картиной мира, внося в нее соответствующие изменения. Так работали все выдающиеся мыслители этого времени — Галилей, Ньютон, Лейбниц, Декарт и др. В то время считалось, что без обращения к фундаментальным основаниям нельзя дать полного объяснения даже частным физическим явлениям.

Но по мере развития науки и расширения исследований формируется потребность в такой коммуникации ученых, которая могла бы обеспечить их совместное обсуждение не только конечных, но и промежуточных результатов научных изысканий. В XVII в. возникает особая форма закрепления и передачи знаний — переписка между учеными. Письма служили не только дружескому общению, но и включали в себя результаты проводимых ими исследований, и описание того пути, которым они были получены.

Уже во второй половине XVII столетия постепенно началось углубление специализации научной деятельности. В различных странах образуются сообщества исследователей-специалистов. Коммуникации между ними начинают осуществляться на национальном языке, а не на латыни. Появляются научные журналы, через которые происходит обмен информацией. Первоначально они выполняли особую функцию объединения исследователей, стремясь показать, что и кем делается, но затем наряду с обзорами начали публиковать сведения о новом знании, и это постепенно стало их главной функцией.

В конце XVIII — первой половине XIX в. в связи с увеличением объема научной информации, наряду с академическими учреждениями, начинают возникать общества, объединяющие исследователей, работающих в различных областях знания (физики, биологии, химии и т.д.).

Новые формы организации науки порождали и новые формы научных коммуникаций и поставили проблему воспроизводства субъекта науки. Возникла необходимость в специальной подготовке ученых, чему способствовали университеты. Наука постепенно утверждалась в своих правах как прочно установленная профессия, требующая специфического образования, имеющая свою структуру и организацию.

35. Что такое дисциплинарно организованная наука и когда она возникает?

Великие открытия и идеи, характеризующие поступательное развитие науки, принадлежат, так сказать, переднему краю науки. Существует определенная разница между передним краем науки и способами трансляции научного знания в культуру. Передний край науки организован проблемно: множество разных исследовательских групп предлагают свои методы и методики решения научной проблемы, в научных спорах и дискуссиях рождается истина. В то время как передача полученного знания последующим поколениям осуществляется в рамках дисциплинарно организованной науки.

Научная дисциплина понимается как определенная форма систематизации научного знания, связанная с его институализацией, с осознанием общих норм и идеалов научного исследования, с формированием научного сообщества, специфического типа научной литературы (обзоров и учебников), с определенными формами коммуникации между учеными, с созданием функционально автономных организаций, ответственных за образование и подготовку кадров. Дисциплинарная организация науки оказывается тем каналом, который обеспечивает социализацию достигнутых результатов, превращая их в научные и культурные образцы, в соответствии с которыми строятся учебники, излагается и передается знание в системе образования.

Дисциплинарно организованное знание возникает именно в том случае, когда все накопленное знание рассматривается под углом зрения трансляции его последующим поколениям. Для обучающегося знание предстает как дисциплина, а для обучающего — как доктрина. И поэтому с позиции лиц, осуществляющих обучение, все наличное знание оказывается совокупностью доктрин. Для дисциплинарного образа науки характерны: трактовка знания как объективно-мыслительной структуры, ориентация преподавания на унифицированное расчленение и упорядочивание всего знания и изложение его в различных компендиумах, энциклопедиях и учебниках.

Величайшим достижением культуры Средних веков явилось создание университетов, выполнявших две функции: учебного заведения и лаборатории научного (в средневековом смысле слова) исследования. Университеты были созданы во всех европейских столицах и ряде крупных городов. В период Средневековья сложилась довольно-таки четкая дисциплинарная организация знания, передаваемая в ходе обучения, и тесно взаимосвязанная с ней дисциплинарная организация учебного процесса.

Формами обучения в это время были лекции и диспуты. На лекциях читали вслух и комментировали какой-либо канонический текст. А основным средством закрепления знаний был диспут. Диспут — это ритуализированная форма общения, осуществляемая по строгим правилам и нормам. Так как в Средние века преподавание и научная работа были неразрывно связаны друг с другом, то диспут к XII в. становится ведущей формой организации не только учебного процесса, но и научной работы.

В Средние века существовали многообразные варианты дисциплинарного расчленения наук. В основе одной из них лежит христианский миф о сотворении мира. И все существовавшие в то время науки классифицировались по дням творений. Такой образ наук был наивно догматичен и представлял собой своего рода комментарий к Библии на основе существовавших в то время сведений по тем или иным вопросам.

Наряду с этим существовал и другой дисциплинарный образ науки: расчленение наук по уровню абстрактности и отдаленности от чувственного бытия, по целям, задачам, средствам различных наук и т.д. Одна из первых попыток такого рода — классификация Августина в «Христианской доктрине». Она строилась на основе восхождения от чувственного знания к абстрактному, что соответствовало задачам образования того времени. В основе этой классификации лежала история, от нее через географию осуществлялось восхождение к астрономии, а потом к арифметике, риторике и диалектике. Но наиболее известной и признанной была система семи «свободных» искусств, предложенная Марцианом Капеллой. В соответствии с этой системой, в качестве спутниц высшей мудрости — филологии выступают на начальном этапе познания грамматика, риторика, диалектика (тривиум), а на последующем — арифметика, геометрия, астрономия и музыка (квадривиум). Эти свободные искусства были положены в основу средневекового образования и рассматривались как канон обучения и совокупность всего «мирского» знания. А после реформы образования Карлом Великим эта система стала эталоном всего европейского образования. Но уже и в это время намечаются попытки расширить состав квадривиума, включив в него такие дисциплины, как астрология, медицина, механика и т.д.

На рубеже XIV—XV вв. (эпоха Возрождения) происходит существенный культурно-исторический сдвиг в отношении человека к природе и вслед за этим и к природознанию, подрываются идеалы и нормы средневековой учености. Научные изыскания начинают развертываться вне традиционных центров культурной жизни (университетов и монастырей). Они перемещаются в кружки интеллектуалов, любителей философии, истории, литературы и т.д. А в XVI в. в Италии возникают такие новые формы организации интеллектуальной жизни, как академии. Гуманисты Возрождения выступают против принудительного характера преподавания, культивируемого в Средние века, требуют от воспитания не только умственного, но и физического развития, радикально меняют содержание изучаемых дисциплин и сам характер образования. Они выдвигают новый идеал — образование как формирование и развитие личности в целостности ее способностей.

На первых порах гуманисты возродили идеал универсально энциклопедического знания. В противовес дисциплинарной иерархии Средневековья систему образования они видят как схему круга, где каждая из наук может стать началом и все науки взаимосвязаны друг с другом.

Но этот способ организации знания в эпоху Возрождения все же не привился. И к середине XVI в. идея систематически энциклопедического изложения всего массива знаний начинает исчезать. Это связано как с бурным ростом знания, происходящим в это столетие, так и с новыми формами организации науки.

Ситуация, связанная с ростом объема научной информации, существенным образом трансформировала способы трансляции знания. Образование начинает строиться как преподавание групп отдельных научных дисциплин, обретая ярко выраженные черты дисциплинарно организованного обучения. В конце XVIII — начале XIX в. дисциплинарно организованная наука, включающая в себя четыре основных блока научных дисциплин: математику, естествознание, технические и социально-гуманитарные науки, — завершила долгий путь формирования науки в собственном смысле слова.

В настоящее время научное знание представляет собой сложноорганизованную систему научных дисциплин. Структура научной дисциплины может быть представлена следующим образом. Все те исследования, которые проводятся представителями данной научной дисциплины, можно назвать передним краем исследования. Для него характерна определенная последовательность научных публикаций: статьи, материалы конференций, симпозиумов, конгрессов, съездов, препринты и депоненты. Более высокий уровень составляют обзоры и рефераты, в которых подводятся определенные обобщения проводимых на переднем крае исследований. Завершающий уровень — создание обобщающей монографии. Устоявшиеся данные научной дисциплины излагаются в учебниках и транслируются последующим поколениям.

36. Что такое технические науки и какова их специфика?

Возникновение технических наук имело социокультурные предпосылки. Оно происходило в эпоху вступления техногенной цивилизации в стадию индустриализма и знаменовало обретение наукой новых функций — быть производительной и социальной силой. К концу XVIII - началу XIX столетия наука окончательно становится бесспорной ценностью цивилизации. К этому времени сформировалась общественная потребность в необходимости таких исследований, которые бы систематически обеспечивали приложение фундаментальных естественнонаучных теорий к области техники и технологии. Своеобразным посредником между естественнонаучными дисциплинами и производством становятся научно-теоретические исследования технических наук.

Их становление в культуре было обусловлено двумя группами факторов. С одной стороны, они утверждались на базе экспериментальной науки, когда для формирования технической теории оказывалось необходимым наличие своей «базовой» естественнонаучной теории (во временном отношении это был период XVIII—XIX вв.). С другой же — потребность в научно-теоретическом техническом знании была инициирована практической необходимостью, когда при решении конкретных задач инженеры уже не могли опираться только на приобретенный опыт, а нуждались в научно-теоретическом обосновании создания искусственных объектов, которое невозможно осуществить, не имея соответствующей технической теории, разрабатываемой в рамках технических наук.

Технические науки не являются простым продолжением естествознания, прикладными исследованиями, реализующими концептуальные разработки фундаментальных естественных наук. В развитой системе технических наук имеется свой слой как фундаментальных, так и прикладных знаний, и эта система требует специфического предмета исследований. Таким предметом выступают техника и технология как особая сфера искусственного, создаваемого человеком и существующего только благодаря его деятельности.

Важной особенностью функционирования технического знания, в которой отражается его связь с практикой, является то, что оно обслуживает проектирование технических и социальных систем, которое существенным образом отличается от исследования. Поэтому технические науки необходимо рассматривать как специфическую сферу знания, возникающую на границе проектирования и исследования и синтезирующую в себе элементы того и другого.

Техническое знание в известной степени определяет как характер деятельности по созданию новых объектов, так и структурно-функциональные характеристики самих объектов. Рассмотрение особенностей последних показывает их двойственную природу, которая заключается в том, что они представляют собой синтез «естественного» и «искусственного». Искусственность технических объектов выражается в том, что они, будучи продуктами созидательной человеческой деятельности, приспособлены к целям деятельности, выполняют в ней определенные функции. Для осуществления своих целей человек преобразовывает тела природы, придает им форму и свойства, соответствующие заданной функции. Границы «искусственного» всегда определяются «естественным», т. е. свойствами тел, поставленных субъектом в те или иные взаимоотношения и взаимодействия. Кроме того, сама сфера «естественного», вовлеченного в человеческую практику, всегда исторически ограничена. Ограниченность объема «естественного», освоенного субъектом и ставшего частью его среды, накладывает отпечаток на процесс создания искусственных объектов.

Исходя из двойственной природы технического объекта, можно выявить следующие его характеристики: всякий технический объект может быть рассмотрен как естественное явление, как частный случай проявления закона природы, устанавливаемого естественными науками; он обнаруживает специфические характеристики, присущие ему как средству целесообразной деятельности. Эти характеристики функциональны по своей природе, они отражают внешнее действие объекта, его функционирование. Подобные свойства могут быть названы техническими в отличие от естественных свойств, характеризующих технический объект как форму «естественного».

Знания о технических свойствах объекта не могут возникнуть в сфере одних только естественных наук потому, что они отражают функционирование объекта в актах предметной деятельности, непосредственно фиксируют его связь с содержанием и целью практической деятельности.

Исходя из характеристик технического объекта, можно сделать вывод, что технические науки должны исследовать соотношение между «естественным» и «искусственным», а также синтезировать данные, получаемые в результате инженерно-практического опыта и естественнонаучного исследования. Так как через технические характеристики обнаруживают себя отличительные особенности функционирования технических объектов, то без фиксации этих свойств и их описания техническое знание немыслимо. В то же время техническое функционирование выступает как проявление естественных характеристик объекта, естественных природных сил. В результате соотношение двух типов характеристик представляет специфическое содержание, выходящее за границы естествознания, и исследование его позволяет, образно говоря, проложить мост от естественнонаучных знаний и открытий к их техническому применению, к изобретениям.

37. Как происходило формирование технических наук?

При осуществлении периодизации технического знания нужно принимать во внимание как относительную самостоятельность развития технического знания, так и его обусловленность прогрессом естествознания и техники. На основании этого исследователями выделяются четыре основных этапа (периода) в развитии технических знаний. Первый этап— донаучный, когда последние существовали как эмпирическое описание предмета, средств трудовой деятельности человека и способов их применения. Он охватывает длительный промежуток времени, начиная с первобытнообщинного строя и кончая эпохой Возрождения.

Техническое знание развивалось и усложнялось одновременно с прогрессом техники, чему свидетельствует его эволюция: от практико-методического (не имеющего письменной формы его фиксации) к технологическому (возникающему в результате применения специализированных инструментов) и от него к конструктивно-техническому. В этот период естественнонаучные и технические знания развивались параллельно, взаимодействуя лишь спорадически, без непосредственной и постоянной связи между ними.

Второй этап в развитии технического знания — зарождение технических наук — охватывает промежуток времени, начиная со второй половины XV в. до 70-х гг. XIX в. Здесь для решения практических задач начинает привлекаться научное знание. На стыке производства и естествознания возникает научное техническое знание (призванное непосредственно обслуживать производство), формируются принципы и методы его получения и построения.

Одновременно продолжается становление естествознания, которое связано с производством опосредованно, через технические науки и технику.

Второй этап в развитии технического знания расчленяется на два подэтапа. Первый подэтап (вторая половина XV в. - начало XVII в.) — это становление экспериментального метода на основе соединения науки и практики. Наука проникает в прикладную сферу, но техническое знание еще не приобретает статуса научной теории, поскольку еще не сформировались окончательно теоретические построения естественных наук, основанные на эксперименте.

Второй подэтап (начало XVIII в. до 70-х гг. XIX в.) характеризуется тем, что появление новых научных теорий в естествознании (прежде всего, в механике) создало необходимые предпосылки для появления технической теории. Поэтому в этот период технические знания также начинают приобретать теоретический характер. Фундаментальное значение естественных наук в становлении научного технического знания определялось тем, что они раскрывали сущность, описывали явления и процессы, применявшиеся в производственной технике, и брали на вооружение формальный математический аппарат для количественного расчета структурных элементов технических устройств, происходящих в них явлений и процессов. На основе знаний, полученных в естественных науках, можно было представить идеальную модель процесса, реализуемого в техническом устройстве, что становилось отправным пунктом конструирования технических объектов.

Третий этап в истории технических наук, который может быть назван «классическим», начинается в 70-е гг. XIX в. и продолжается вплоть до середины XX в. Технические науки весьма неравномерно вступают в стадию зрелости. Одной из характеристик их зрелости является применение научного знания при создании новой техники. С конца XIX — начала XX в. наука не только стала обеспечивать потребности развивающейся техники, но и опережать ее развитие, формируя схемы возможных будущих технологий и технических систем.

В это время технические науки представляют собой сформировавшуюся область научного знания со своим предметом, особыми теоретическими принципами, специфическими идеальными объектами. Ряд дисциплин уже обеспечен эффективным математическим аппаратом. Происходит дифференциация технического знания, складываются устойчивые, четкие формы взаимосвязи естествознания и технических наук.

Четвертый — «неклассический» — этап развития технических наук начинается с середины XX в. На этом этапе в результате усложнения проектирования объектов инженерной деятельности формируются комплексные научно-технические дисциплины — эргономика, системотехника, дизайн-системы, теоретическая геотехнология и т.д.

38. Как взаимосвязаны наука и техника?

Своим происхождением термин «техника» обязан древнегреческому «techne», который обозначал умение, мастерство, искусство плотника, строителя и т.д., другими словами, — любое человеческое мастерство: как ремесленное, так и художественное, направленное на производство того, что не способна произвести природа.

Сегодня техника должна быть понята: а) как совокупность технических устройств, артефактов — от отдельных простейших орудий до сложнейших технических систем; б) как совокупность различных видов технической деятельности по созданию этих устройств — от научно-технического исследования и проектирования до их изготовления на производстве и эксплуатации, от разработки отдельных элементов технических систем до системного исследования и проектирования; в) как совокупность технических знаний — от специализированных рецептурно-технических до теоретических научно-технических и системотехнических знаний1.

В современной литературе, рассматривая вопрос о соотношении науки и техники, выделяют следующие основные подходы:



  1. техника рассматривается как прикладная наука;

  2. процессы развития науки и техники рассматриваются как автономные, но скоординированные процессы;

  3. наука развивалась, ориентируясь на развитие технических аппаратов и инструментов;

  1. техника науки во все времена обгоняла технику повседневной жизни;

  1. до конца XIX в. регулярного применения научных знаний в технической практике не было, но оно характерно для современных технических наук.

Рассмотрение техники как прикладной науки, долгое время господствовавшее в философии техники, получило название линейной модели. Такая модель взаимоотношения науки и техники, когда за наукой признается функция производства знания, а за техникой — лишь его применение, является упрощенной, а поэтому и неадекватной.

Эволюционная модель рассматривает процессы развития науки и техники как автономные, независимые друг от друга, но скоординированные. Чаще всего она понимает технический прогресс как опирающийся, прежде всего, на эмпирическое знание, полученное в процессе имманентного развития самой техники, а не на теоретическое знание, привнесенное извне научным исследованием. Односторонним является акцентирование внимания лишь на эмпирическом характере технического знания: очевидно, что современная техника немыслима без глубоких теоретических исследований, которые проводятся сегодня не только в естественных, но и в технических науках,

В эволюционной модели соотношения науки и техники выделяются три взаимосвязанные, но самостоятельные сферы: наука, техника и производство. Внутренний инновационный процесс происходит в каждой из этих сфер по эволюционной схеме. Очень часто исследователи распространяют эволюционную модель, разработанную для науки, и на эволюцию техники (Ст. Тулмин), что чаще всего выливается в приведение подтверждающих модель примеров.

Характерной особенностью современных технических наук является регулярное, систематическое и целенаправленное применение научных знаний в технической практике. При этом происходит как «специализация техники», так и «технизация науки».

Раздел III


Каталог: FILES
FILES -> Истоки и причины отклоняющегося поведения
FILES -> №1. Введение в клиническую психологию
FILES -> Общая характеристика исследования
FILES -> Клиническая психология
FILES -> Валявский Андрей Как понять ребенка
FILES -> К вопросу о формировании специальных компетенций руководителей общеобразовательных учреждений в целях создания внутришкольных межэтнических коммуникаций
FILES -> Русские глазами французов и французы глазами русских. Стереотипы восприятия


Поделитесь с Вашими друзьями:
1   ...   14   15   16   17   18   19   20   21   ...   69


База данных защищена авторским правом ©znate.ru 2019
обратиться к администрации

    Главная страница