Субстанциональная интерпретация концепции времени Н



страница1/21
Дата26.07.2018
Размер0.68 Mb.
  1   2   3   4   5   6   7   8   9   ...   21

Субстанциональная интерпретация концепции времени Н.А. Козырева.
Левич А.П.
1996 год.

http://www.chronos.msu.ru/RREPORTS/levich_subst.interpret/levich_subst.interpret.htm


1. О существовании "потока времени".
Выдающийся астроном и естествоиспытатель Н.А. Козырев ввел в динамическое описание Мира новую, обладающую "активными свойствами" сущность, не совпадающую ни с веществом, ни с полем, ни с пространством-временем в обычном его понимании.

Предъявление этой сущности трудно не только для интуитивного и логического понимания, но и для вербального описания, поскольку подходящий аппарат понятий или образов для новых представлений еще не развит. Исследователи по-разному "прочитывают" Н.А. Козырева, по-разному расставляют акценты и выделяют ракурсы видения предмета. Естественным образом возникают несовпадающие интерпретации козыревских представлений. И.А. Еганова раскрывает взгляды Н.А. Козырева, вводя "метавзаимодействие", которое "представляется охватывающим в целом весь материальный мир и несущим способ существования всех проявлений материи путем саморегулирования в едином мировом процессе" (Еганова, 1984, с.2), при этом не исключается, что "существует некоторый материальный носитель (некоторая материальная среда), с помощью которой непосредственно осуществляется "превращение" причины в следствие" (с. 32). С.М. Коротаев (см. его обзор в настоящей книге) делает акцент в концепции времени Н.А. Козырева на причинной природе фундаментальной необратимости, признавая при этом и то, что причинная механика Н.А. Козырева есть конструкция субстанционального времени.

В настоящем обзоре предлагается взглянуть на идеи Н.А. Козырева предпочтительно с позиций их субстанциональной интерпретации.

Н.А. Козырев (1963, с.96) представляет, что время "является грандиозным потоком, охватывающим все материальные процессы во Вселенной, и все процессы, происходящие в этих системах, являются источниками, питающими этот общий поток". Он пишет об интенсивности или плотности этого потока, об энергии, что несет поток, о его излучении или поглощении, о прямолинейности его распространения, об отражении от препятствий или о поглощении его веществом... По Н.А. Козыреву, "время втекает в систему через причину к следствию" (Kozyrev, 1971, p.118). "Получается впечатление, что время втягивается причиной и, наоборот, уплотняется в том месте, где расположено следствие... В каждом процессе Природы может затрачиваться или образовываться время" (p.129). Поэтому возникают основания для отождествления потока Козырева с некоторым субстанциональным потоком, источником которого являются, по Козыреву, любые неравновесные, необратимые мировые процессы (под ними подразумеваются, по-видимому, процессы, сопровождающиеся изменениями энергии и термодинамической энтропии систем). Доводы, убедившие Н.А. Козырева в необходимости представлений о существовании потока времени, частично умозрительны, но основная их доля добыта в результате многолетних экспериментов. Подробное обсуждение опытных материалов содержится в следующих параграфах обзора.

Козырев предлагает заметить резкое противоречие между вторым началом термодинамики, приближающим тепловую и радиационную деградацию Вселенной, и отсутствием каких-либо следов равновесия в наблюдаемом разнообразии Вселенной. Он подчеркивает, что "попытки объяснить отсутствие тепловой смерти... были оторваны от той реальной Вселенной, которую наблюдает астроном. Дело в том, что отдельные небесные тела и их системы так изолированы друг от друга, что для них тепловая смерть должна заметно приблизиться, прежде чем произойдет вмешательство сторонней системы. Поэтому деградированные состояния систем должны бы преобладать, а вместе с тем они почти не встречаются. И задача состоит не только в том, чтобы объяснить неравновесность Вселенной в целом, она имеет значительно более конкретный смысл - понять, почему отдельные системы и сами небесные тела продолжают жить, несмотря на короткие срок и релаксации" (Козырев, 1963, с.96).

Возможны различные гипотезы, "спасающие" второе начало термодинамики. Например, сохранение изолированности Вселенной и расположение текущего момента космологического времени не настолько далеко от "начальной" флуктуации (сингулярности, катаклизма), чтобы следы деградации были достаточно заметны, т.е. "смерть" отодвигается на далекое будущее. Н.А. Козырев предлагает альтернативный вариант: Вселенная и ее подсистемы не изолированы, т.е. необходимое условие действия второго начала термодинамики отсутствует; "в природе существуют постоянно действующие причины, препятствующие возрастанию энтропии" (Козырев, 1958, с.3). Необходимым источником неизолированности системы как раз и является поток Козырева.

"Проблема преодоления тепловой смерти Мира теснейшим образом связана с проблемой происхождения свечений Солнца и звезд" (там же, с.4). "Интересно, что даже такой конкретный вопрос - почему светятся Солнце и звезды, т.е. почему они не находятся в тепловом равновесии с окружающим их пространством, - не может быть решен в рамках известных физических законов. Этот вывод следует из анализа астрономических данных. Для значительного числа звезд известны их радиусы, массы и светимость, т.е. расход энергии в единицу времени. Зная массу и радиус, мы можем оценить не только среднюю плотность, но и давление внутри звезды. Для идеального газа из отношения этих величин можно определить и температуру внутри звезды. Сопоставление полученных таким образом температур и плотностей доказывает, что внутри звезд, за исключением белых карликов, вещество действительно является идеальным газом. Светимость звезды должна зависеть от ее размеров и условий теплоотдачи, которые определяются в конечном счете температурой и плотностью. Поэтому светимость должна быть некоторой определенной функцией радиуса и массы звезды. В пространстве с осями координат - светимость, масса, радиус - звезды должны располагаться на некоторой поверхности, уравнение которой определяется условиями теплоотдачи. Допустим теперь, что внутри звезды идут процессы теплообразования, зависящие от физических условий, например термоядерные реакции, которые компенсируют теплоотдачу звезды. Тогда теплообразование будет равняться светимости звезды и зависеть от массы и радиуса по закону, отвечающему данной реакции. В пространстве - светимость, масса, радиус - получается вторая поверхность, на которой должны располагаться звезды. При условии теплового равновесия звезды могут существовать только на линии пересечения построенных поверхностей теплоотдачи и теплообразования. На самом же деле расположение реальных звезд в пространстве получается не по линии, а по некоторой поверхности в довольно значительной области. Таким образом, поверхности теплоотдачи и теплообразования тождественно совпадают. Это указывает, что внутри звезд нет специальных источников энергии. При таких условиях срок жизни звезд, вычисленный Гельмгольцем и Кельвином, получается слишком коротким: для Солнца около тридцати миллионов лет. В действительности же Солнце, по достоверным геологическим данным, живет значительно дольше этого срока" (Козырев, 1963, с.96).

И.А. Еганова (1984, с.4-5) комментирует: "К сожалению... работы Н.А. Козырева, в которых прежде всего детально анализировался вопрос о том, существуют ли в звездах необходимые физические условия для соответствующих термоядерных реакций, не были восприняты и потому не смогли оказать влияние на дальнейшее развитие идей в этой области: тогда все были "зачарованы" термоядерными циклами Г. Бете (1968). Первый ощутимый удар по сложившимся представлениям о термоядерных источниках звездной энергии нанесли... первые результаты брукхейвенских экспериментов Р. Дэвиса по обнаружению солнечных нейтрино - признаков термоядерной природы солнечной энергии. Пришлось признать, что "даже строение звезд главной последовательности мы понимаем хуже, чем думали" (Шама, 1973, с.16), что "в звездах могут существовать и другие источники энергии" (Соболев, 1975, с.479). Возникли другие предположения относительно природы звездной энергии, см., например, литературу, цитирующуюся по этому поводу в статье Е.С. Мэкси (1982). Стали известны и другие крупные неувязки в теории строения и эволюции звезд, основанной на термоядерных реакциях. Они связаны с рядом современных геологических и палеоклиматических данных, а также с обнаруженными 160-минутными колебаниями Солнца (Северный, 1983). Однако последние результаты группы Р. Дэвиса, фиксирующие поток электрических нейтрино, хотя и в 3-4 раза ниже предсказаний теории... не вызывают у многих физиков необходимости пересмотра идеи о термоядерной природе солнечной энергии (Копысов, 1983; Дэвис, 1983; Понтекорво, 1983)... В такой ситуации работы Н.А. Козырева (1948, 1951) по-прежнему сохраняют свою актуальность как вскрывающие внутреннюю противоречивость" этой идеи. Таким образом, по Козыреву, "звезды являются машинами", черпающими энергию из "потока времени".

Поток Козырева обнаруживается в многочисленных механических явлениях. Необратимые процессы (например, в экспериментах Н.А. Козырева это деформация тел, удары воздушной струи о препятствия, работа песочных часов, поглощение света, трение, горение, некоторые виды деятельности наблюдателя, изменение температуры тел, изменение агрегатного состояния вещества, растворение или перемешивание веществ, увядание растений, несветовое излучение астрономических объектов), по мнению экспериментаторов, излучая или поглощая козыревский поток, поворачивают коромысло или диск крутильных весов. Оказывается при этом, что поток может экранироваться и поглощаться веществом, а также отражаться. Неупругие процессы в твердых телах меняют их вес, а для упругих тел меняются количественные характеристики упругости. Меняется вес волчков при условии включения вращающегося тела в дополнительный процесс, например вибрацию, нагрев или охлаждение, пропускание электрического тока. Многие особенности фигуры и климата как Земли, так и других планет объясняются влиянием диссипативных процессов на планеты как на гигантские гироскопы.

На поток, сопутствующий неравновесным процессам, реагируют параметры и немеханических датчиков: величина сопротивления резисторов, уровень ртути в термометрах, частота колебаний кварцевых пьезоэлементов, электрический потенциал термопары, вязкость воды, работа выхода электронов в фотоэлементах, скорости химических реакций, параметры роста растений и бактерий. Величины эффектов зависят от энергетических характеристик индуцирующих процессов, от географической широты места проведения эксперимента (для механических опытов), от времени года, протекания поблизости от датчиков дополнительных активных неравновесных процессов, от каких-то иных нерегулярных и не всегда ясных условий опыта. По мнению И.А. Егановой (1984, с.10), целый ряд явлений, наблюдавшихся независимо от Н.А. Козырева, обнаруживают влияние фоновых неравновесных процессов на датчики, аналогичные тем, что испытал Н.А. Козырев: "...так называемый кинетобарический эффект (Peschka, 1979), результаты опытов Дж. Пиккарди (25-летние наблюдения за скоростью осаждения хлористого висмута) и С.В. Тромпа (наблюдения за скоростью оседания эритроцитов) (Мэкси, 1982), фликкер-шум (Жвирблис, 1983; Герценштейн, 1983), результаты наблюдений удлинения периода колебания крутильного маятника во время полного солнечного затмения 1970 г. (Saxel, Allen, 1971) и аналогичные результаты метрологов В.С. Казачка, О.В. Хаврошкина и В.В. Циплакова (1977), повторивших эти опыты во время солнечного затмения 1976 г., результаты А. Шаповалова (1973) по трехлетним наблюдениям темнового тока фотоумножителя"; см. также обсуждение некоторых из указанных эффектов в работах Н.А. Козырева (1982; Kozyrev, 1971).

Добавим, что козыревские потоки могут оказаться и той универсальной космофизической причиной, которая обусловливает макроскопические флуктуации, проявляющиеся в одинаковой форме гистограмм для совершенно различных процессов - от биохимических реакций до радиоактивного распада - в одновременных опытах, разделенных порою тысячами километров (Шноль и др., 1985). Тем более, что в экспериментах Н.А. Козырева с коллегами большое место занимает непосредственная регистрация (и применение для астрономических измерений) потоков неэлектромагнитной и некорпускулярной природы, исходящих от планет, звезд, галактик, звездных скоплений и туманностей.

Следует отметить, что взгляды Н.А. Козырева с трудом укладываются в существующие физические представления. Величины эффектов в опытах Козырева невелики: дополнительные силы в механических опытах составляют 10-4-10-5 величины веса тела, участвующего в измерении; относительное изменение в работе немеханических датчиков, обязанное потоку Козырева, имеет порядок 10-6-10-7 измеряемой величины; для крутильных весов эффект поворота может достигать нескольких десятков градусов, что соответствует силам, составляющим 10-6-10-7 от величины уже действующих в системе сил. Вот как Н.А. Козырев иллюстрирует трудности обнаружения скрытых дополнительных источников энергии звезд, связанные с локальной малостью эффектов, "Получилась ситуация, аналогичная той, в которой оказался бы физик лаборатории, оторванной от Земли и находящейся в глубинах космоса. Едва ли он натолкнулся бы в своих опытах на действие сил тяготения. Вместе с тем эти силы определяют не только всю динамику космических тел, но и их внутреннее строение. Аналогия здесь заключается в том, что, несмотря на огромную потерю энергии, звезда представляет собой удивительный по совершенству термос. Например, вещество Солнца при температуре внутри него порядка десяти миллионов градусов может остывать, в соответствии со шкалой Гельмгольца-Кельвина, только на один градус за три года! Ничтожный приток энергии, необходимый для компенсации такого расхода, едва ли мог бы обратить на себя внимание в лабораторных условиях" (Козырев, 1977, с.210). "Результаты опытов показывают, что организующее... свойство времени оказывает на системы влияние, очень малое в сравнении с обычным разрушающим ходом их развития. Поэтому неудивительно, что это... начало было пропущено в системе наших научных знаний. Но, будучи малым, оно в природе рассеяно всюду и поэтому необходима только возможность его накопления..." (Козырев, 1982, с.71).

В принципе, возможно объяснение наблюдаемых эффектов Козырева более прозаическими причинами, нежели влияние "потока времени" (конвективными потоками, влиянием изменения температуры, наведенными электрическими или магнитными полями и т.д.). Н.А. Козырев старался проанализировать роль посторонних причин в своих экспериментах; например, возможным механизмам появления эффектов при взвешивании вибрирующих тел на рычажных весах им посвящена отдельная статья. Но у его оппонентов всегда могут сохраниться возражения в связи с не анализировавшимися факторами. К тому же читатель справедливо ожидает, что подробный анализ погрешностей, которые могли бы превратить наблюдаемые эффекты в обидные артефакты, составляет заботу автора. Однако к настоящему моменту не существует ни конкретного опровержения экспериментальных результатов Н.А. Козырева, ни последовательного объяснения их обычными физическими факторами, есть лишь справедливое сомнение в однозначности интерпретаций опытного материала.

Судя по опубликованным данным, к настоящему времени некоторые из экспериментов Н.А. Козырева воспроизведены и подтверждены группой новосибирских исследователей (Лаврентьев и др.,1990а, 1990б; 1991; 1992). Также Г. Xаясака и С. Такеучи (Hayasaka, Takeuchi, 1989) при взвешивании гироскопов обнаружили эффекты, аналогичные козыревским (по-видимому, не подозревая о работах российского коллеги). Работа японских экспериментаторов вызвала жесткую дискуссию в физических журналах. Ни французские (Quinn, Picard, 1990), ни американские (Faller et al, 1990; Nitschke, Wilmarth, 1990), ни японские (Imanishi et al, 1991) оппоненты не обнаружили эффектов облегчения веса гироскопов, сходных с теми, что получили Н.А. Козырев и Г. Xаясака с С. Такеучи. Козыревская постановка опытов с гироскопами ( подробности см. в разделе 2.11 настоящего обзора) требует обязательного участия взвешиваемого гироскопа в дополнительных необратимых процессах типа вибраций, распространения тепла или электрического тока. Г. Xаясака и С. Такеучи подчеркивают, что и в их опытах присутствовала механическая вибрация гироскопа, причем инструментально обеспечивалось гашение вибраций с помощью "подкладывания под гироскоп подушки из пенообразного полиуритана". Впрочем, и в экспериментах, где эффекты Козырева не обнаружены, применялись как пружинные подвесы (Faller et al , 1990), так и полиуритановая пена для гашения вибраций (Quinn, Picard, 1990); упоминания о необратимых процессах в двух других работах отсутствуют.

Желанию повторить или развить непростые козыревские опыты, по-видимому, мешает трудность восприятия работ Н.А. Козырева, где, к сожалению, не сделана попытка адаптировать самобытные идеи и терминологию к существующим нормам научного истэблишмента.

Научные воззрения Н.А. Козырева не раз вступали в противоречие с парадигмальными установками его коллег-оппонентов. Это не помешало Н.А. Козыреву сделать выдающиеся открытия в астрономии, в частности предсказать и обнаружить вулканизм на Луне. Может быть, интуиция не обманула нашего неординарного современника и в предвидении субстанциональной природы течения Времени?





Поделитесь с Вашими друзьями:
  1   2   3   4   5   6   7   8   9   ...   21


База данных защищена авторским правом ©znate.ru 2017
обратиться к администрации

    Главная страница