Статистическое образование в соответствии с новой парадигмой прикладной статистики



Скачать 265.57 Kb.
страница1/2
Дата11.08.2018
Размер265.57 Kb.
ТипУчебник
  1   2

Орлов А.И.

д.э.н., д.т.н., к.ф.-м.н.,

директор Института высоких статистических технологий и эконометрики, профессор МГТУ им. Н.Э. Баумана, профессор МФТИ

prof-orlov@mail.ru


СТАТИСТИЧЕСКОЕ ОБРАЗОВАНИЕ В СООТВЕТСТВИИ С НОВОЙ ПАРАДИГМОЙ ПРИКЛАДНОЙ СТАТИСТИКИ
Ключевые слова: статистика, математика, экономика, управление, образование, математическая статистика, новая парадигма, ошибки в учебниках.

Keywords: statistics, mathematics, economics, management, education, mathematical statistics, new paradigm, error.
Статистические исследования (с целью информационно-аналитической поддержки процесса принятия управленческих решений) проводятся с давних времен. Например, для принятия решений в военной области необходима информация о числе военнообязанных. О переписи военнообязанных рассказано в Ветхом Завете в Четвертой книге Моисеевой "Числа"1. Поэтому вполне естественно, что в программы высшего образования включают статистические дисциплины.

Если в высшей школе США число преподавателей и кафедр в области статистики вполне сопоставимо с числом преподавателей и кафедр в области математики, то в нашей стране - совсем другая ситуация. Официально признаны лишь две составляющие статистики - математическая статистика и ведомственная наука Росстата. Первая составляющая относится к математике, к научной специальности 01.01.05 "теория вероятностей и математическая статистика". Вторая составляющая относится к экономическим наукам, к научной специальности 08.00.12 "Бухгалтерский учет, статистика". Все остальные составляющие статистики, например, статистические методы в технике, медицине, химии, истории, социологии, психологии и т.п., проигнорированы. Впрочем, некоторые из этих "забытых" составляющих укрепились и получили собственные имена. Например, эконометрика - статистические методы в экономике и управлении (менеджменте). В нашей стране создана отечественная научная школа в области эконометрики2.

Очевидно, деятели научной специальности 01.01.05 "теория вероятностей и математическая статистика" ориентированы на доказательство теорем, а не на изучение проблем анализа реальных статистических данных. Они уходят от реального мира внутрь математики, их научные результаты зачастую бесполезны для практики.

Деятели научной специальности 08.00.12 "Бухгалтерский учет, статистика" исходят из экономической методологии, имеют экономическое образование, под статистикой понимают деятельность Росстата. Не зная математики, составляют учебники, например, по общей теории статистики, содержащие математико-статистические ошибки. Много конкретных ошибок приведено на Интернет-ресурсе "Профессора-невежды готовят себе на смену новых невежд"1. Причины появления ошибок проанализированы на Интернет-ресурсе "Типовые ошибки при вхождении в прикладную статистику"2. На деятельность Росстата, к сожалению, нельзя ориентироваться. Ложь официальной статистики постоянно разоблачается в различных публикациях3.

В начале 1980-х годов мы выделили научную дисциплину "Прикладная статистика". Наш базовый учебник по этой дисциплине начинается словами: "Прикладная статистика - это наука о том, как обрабатывать данные"4. Методы прикладной статистики могут применяться в любой области науки, в любой отрасли научного хозяйства.

В 1980-х годах была создана попытка объединить статистиков различных научных направлений и ведомственной принадлежности. В 1990 г. был проведен Учредительный съезд Всесоюзной статистической ассоциации. Ассоциация состояла из четырех секций - специалистов по статистическим методам, специалистов по прикладным статистическим исследованиям (в нее входили в основном работников оборонных отраслей промышленности), преподавателей статистики в экономических вузах, работников официальной статистики. Автор настоящей статьи был избран вице-президентом (по секции статистических методов).

При подготовке к созданию Всесоюзной статистической ассоциации был проведен анализ ситуации в области статистики. В частности, было установлено, что в учебниках по "Общей теории статистики" обычно излагаются (с теми или иными математическими ошибками) основы прикладной статистики1, к которым добавляется небольшая по объему информация о деятельности органов официальной статистики.

Наши работы исторического порядка, посвященные развитию статистических методов в нашей стране, суммированы в главе 2 (с.13-61) монографии2. Отметим, что подготовка адекватной история отечественной статистики - дело будущего. Имеющиеся сочинения удручающе односторонние. Так, в "учебном пособии"3 даже не упомянут великий статистик ХХ в. член-корреспондент АН СССР Николай Васильевич Смирнов. Но и из имеющейся информации было ясно, что перестройка статистики назрела. Одним из наших предложений4 было создание Всесоюзной статистической ассоциации. Другим - организация Всесоюзного центра статистических методов и информатики, миссия которого - разработка и внедрение программных продуктов по статистическим методам.

Всесоюзная статистическая ассоциация - аналог Королевского статистического общества (1834) и Американской статистической ассоциации (1839). Однако вследствие развала СССР Всесоюзная статистическая ассоциация прекратила работу, как и другие союзные организации. С юридической точки зрения это незаконно, поскольку в ее Уставе была норма - ликвидация ассоциации возможна лишь по решению съезда. Такого съезда не было. Был лишь один съезд - Учредительный (1990). Поэтому юридически Всесоюзная статистическая ассоциация существует. На постсоветском пространстве наиболее активным является сообщество узбекских статистиков. Регулярно проводятся многочисленные международные конференции "Статистика и ее применения".

За 1990-е годы число участников статистических конференций и семинаров сократилось на порядок, поэтому мы сочли необходимым перейти к составлению учебников и монографий.

В ходе организации Всесоюзной статистической ассоциации было проанализировано состояние и перспективы развития рассматриваемой области научно-прикладных исследований и осознаны основы уже сложившейся к концу 1980-х гг. новой парадигмы статистики. В течение следующих лет новая парадигма развивалась и к настоящему времени оформлена в виде серии монографий и учебников для вузов, состоящей более чем из 10 книг. Проведем сравнение старой и новой парадигм математических методов исследования.

Типовые исходные данные в новой парадигме – объекты нечисловой природы (элементы нелинейных пространств, которые нельзя складывать и умножать на число, например, множества, бинарные отношения), а в старой – числа, конечномерные векторы, функции. Ранее (в старой парадигме) для расчетов использовались разнообразные суммы, однако объекты нечисловой природы нельзя складывать, поэтому в новой парадигме применяется другой математический аппарат, основанный на расстояниях между объектами нечисловой природы и решении задач оптимизации.

Изменились постановки задач анализа данных и экономико-математического моделирования. Старая парадигма математической статистики исходит из идей начала ХХ в., когда К. Пирсон предложил четырехпараметрическое семейство распределений для описания распределений реальных данных. В это семейство как частные случаи входят, в частности, подсемейства нормальных, экспоненциальных, Вейбулла-Гнеденко, гамма-распределений. Сразу было ясно, что распределения реальных данных, как правило, не входят в семейство распределений Пирсона (об этом говорил, например, академик С.Н.Бернштейн в 1927 г. в докладе на Всероссийском съезде математиков1). Однако математическая теория параметрических семейств распределений (методы оценивание параметров и проверки гипотез) оказалась достаточно интересной с теоретической точки зрения (в ее рамках был доказан ряд трудных теорем), и именно на ней до сих пор основано преподавание во многих вузах. Итак, в старой парадигме основной подход к описанию данных - распределения из параметрических семейств, а оцениваемые величины – их параметры, в новой парадигме рассматривают произвольные распределения, а оценивают - характеристики и плотности распределений, зависимости, правила диагностики и др. Центральная часть теории – уже не статистика числовых случайных величин, а статистика в пространствах произвольной природы, т.е. нечисловая статистика2.

В старой парадигме источники постановок новых задач - традиции, сформировавшиеся к середине ХХ века, а в новой - современные потребности математического моделирования и анализа данных (XXI век), т.е. запросы практики. Конкретизируем это общее различие. В старой парадигме типовые результаты - предельные теоремы, в новой - рекомендации для конкретных значений параметров, в частности, объемов выборок. Изменилась роль информационных технологий – ранее они использовались в основном для расчета таблиц (в частности, информатика находилась вне математической статистики), теперь же они - инструменты получения выводов (имитационное моделирование, датчики псевдослучайных чисел, методы размножения выборок, в т.ч. бутстреп, и др.). Вид постановок задач приблизился к потребностям практики – при анализе данных от отдельных задач оценивания и проверки гипотез перешли к статистическим технологиям (технологическим процессам анализа данных). Выявилась важность проблемы «стыковки алгоритмов» - влияния выполнения предыдущих алгоритмов в технологической цепочке на условия применимости последующих алгоритмов. В старой парадигме эта проблема не рассматривалась, для новой – весьма важна.

Если в старой парадигме вопросы методологии моделирования практически не обсуждались, достаточными признавались схемы начала ХХ в., то в новой парадигме роль методологии (учения об организации деятельности)1 является основополагающей. Резко повысилась роль моделирования – от отдельных систем аксиом произошел переход к системам моделей. Сама возможность применения вероятностного подхода теперь – не «наличие повторяющегося комплекса условий» (реликт физического определения вероятности (по Мизесу), использовавшегося до аксиоматизации теории вероятностей А.Н. Колмогоровым в 1930-х гг.), а наличие обоснованной вероятностно-статистической модели. Если раньше данные считались полностью известными, то для новой парадигмы характерен учет свойств данных, в частности, интервальных и нечетких2. Изменилось отношение к вопросам устойчивости выводов – в старой парадигме практически отсутствовал интерес к этой тематике, в новой разработана развитая теория устойчивости (робастности) выводов по отношению к допустимым отклонениям исходных данных и предпосылок моделей3.

Результаты сравнения парадигм удобно представить в виде табл. 1.



Таблица 1


Каталог: wp-content -> uploads -> 2018
2018 -> Программа вступительного экзамена в аспирантуру по философии Рассмотрена и одобрена на заседании нтс ао «цнити «Техномаш»
2018 -> Курс лекций «Українські історичні школи»
2018 -> Т. В. Юрьева Историческая интерпретация русского православного иконостаса
2018 -> Методические рекомендации для педагогических работников, родителей и руководителей образовательных организаций по педагогическому
2018 -> Круглый стол «Вечной может быть лишь Россия Духа» /к 70-летию со дня смерти выдающего русского философа


Поделитесь с Вашими друзьями:
  1   2


База данных защищена авторским правом ©znate.ru 2017
обратиться к администрации

    Главная страница