Решением Педагогического совета гбоу «Президентский фмл№239»


Требования к предметным результатам обучающихся по математике в 7–9 классах



страница310/518
Дата22.08.2018
Размер2.33 Mb.
ТипРешение
1   ...   306   307   308   309   310   311   312   313   ...   518
Требования к предметным результатам обучающихся по математике в 7–9 классах


Линия

Выпускник научится

Выпускник получит возможность научиться

для использования в повседневной жизни и обеспечения возможности успешного продолжения образования на базовом и углублённом уровнях

для успешного продолжения образования на углублённом уровне

Числа

  • Оперировать понятиями: натуральное число, множество натуральных чисел, целое число, множество целых чисел, обыкновенная дробь, десятичная дробь, смешанное число, рациональное число, множество рациональных чисел, иррациональное число, квадратный корень, действительное число, геометрическая интерпретация натуральных, целых, рациональных, действительных чисел;

  • понимать и объяснять смысл позиционной записи натурального числа;

  • выполнять вычисления, в том числе с использованием приёмов рациональных вычислений;

  • использовать признаки делимости на 2, 4, 8, 5, 3, 6, 9, 10, 11, суммы и произведения при выполнении вычислений и решении задач;

  • выполнять округление рациональных чисел с заданной точностью;

  • сравнивать рациональные и иррациональные числа;

  • упорядочивать числа, записанные в виде обыкновенной и десятичной дроби;

  • находить НОД и НОК и использовать их при решении задач.

В повседневной жизни и при изучении других предметов:

  • применять правила приближенных вычислений при решении практических задач и решении задач других учебных предметов;

  • выполнять сравнение результатов вычислений при решении практических задач, в том числе приближенных вычислений;

  • составлять и оценивать числовые выражения при решении практических задач и задач из других учебных предметов;

  • записывать и округлять числовые данные реальных величин с использованием разных систем измерения

  • Свободно оперировать понятиями: натуральное число, множество натуральных чисел, целое число, множество целых чисел, обыкновенная дробь, десятичная дробь, смешанное число, рациональное число, множество рациональных чисел, иррациональное число, корень степени n, действительное число, множество действительных чисел, геометрическая интерпретация натуральных, целых, рациональных, действительных чисел;

  • доказывать и использовать признаки делимости на 2, 4, 8, 5, 3, 6, 9, 10, 11, суммы и произведения при выполнении вычислений и решении задач;

  • выполнять округление рациональных и иррациональных чисел с заданной точностью;

  • сравнивать действительные числа разными способами;

  • упорядочивать числа, записанные в виде обыкновенной и десятичной дроби, числа, записанные с использованием арифметического квадратного корня, корней степени больше 2;

  • находить НОД и НОК разными способами и использовать их при решении задач;

  • выполнять вычисления и преобразования выражений, содержащих действительные числа, в том числе корни натуральных степеней.

В повседневной жизни и при изучении других предметов:

  • выполнять и объяснять результаты сравнения результатов вычислений при решении практических задач, в том числе приближенных вычислений, используя разные способы сравнений;

  • записывать, сравнивать, округлять числовые данные реальных величин с использованием разных систем измерения;

  • составлять и оценивать разными способами числовые выражения при решении практических задач и задач из других учебных предметов

Тождественные преобразования

  • Оперировать понятиями степени с натуральным показателем, степени с целым отрицательным показателем;

  • выполнять преобразования целых выражений: действия с одночленами (сложение, вычитание, умножение), действия с многочленами (сложение, вычитание, умножение);

  • выполнять разложение многочленов на множители одним из способов: вынесение за скобку, группировка, использование формул сокращенного умножения;

  • выделять квадрат суммы и разности одночленов;

  • раскладывать на множители квадратный трёхчлен;

  • выполнять преобразования выражений, содержащих степени с целыми отрицательными показателями, переходить от записи в виде степени с целым отрицательным показателем к записи в виде дроби;

  • выполнять преобразования дробно-рациональных выражений: сокращение дробей, приведение алгебраических дробей к общему знаменателю, сложение, умножение, деление алгебраических дробей, возведение алгебраической дроби в натуральную и целую отрицательную степень;

  • выполнять преобразования выражений, содержащих квадратные корни;

  • выделять квадрат суммы или разности двучлена в выражениях, содержащих квадратные корни;

  • выполнять преобразования выражений, содержащих модуль.

В повседневной жизни и при изучении других предметов:

  • выполнять преобразования и действия с числами, записанными в стандартном виде;

  • выполнять преобразования целых выражений при решении задач других учебных предметов

  • Свободно оперировать понятиями степени с целым и дробным показателем;

  • выполнять доказательство свойств степени с целыми и дробными показателями;

  • оперировать понятиями «одночлен», «многочлен», «многочлен с одной переменной», «многочлен с несколькими переменными», коэффициенты многочлена, «стандартная запись многочлена», степень одночлена и многочлена;

  • свободно владеть приемами преобразования целых и дробно-рациональных выражений;

  • выполнять разложение многочленов на множители разными способами, с использованием комбинаций различных приёмов;

  • использовать теорему Виета и теорему, обратную теореме Виета, для поиска корней квадратного трёхчлена и для решения задач, в том числе задач с параметрами на основе квадратного трёхчлена;

  • выполнять деление многочлена на многочлен с остатком;

  • доказывать свойства квадратных корней и корней степени n;

  • выполнять преобразования выражений, содержащих квадратные корни, корни степени n;

  • свободно оперировать понятиями «тождество», «тождество на множестве», «тождественное преобразование»;

  • выполнять различные преобразования выражений, содержащих модули.

В повседневной жизни и при изучении других предметов:

  • выполнять преобразования и действия с буквенными выражениями, числовые коэффициенты которых записаны в стандартном виде;

  • выполнять преобразования рациональных выражений при решении задач других учебных предметов;

  • выполнять проверку правдоподобия физических и химических формул на основе сравнения размерностей и валентностей

Уравнения и неравенства

  • Оперировать понятиями: уравнение, неравенство, решение уравнения, решение неравенства, равносильные уравнения, область определения уравнения (неравенства, системы уравнений или неравенств);

  • решать линейные уравнения и уравнения, сводимые к линейным с помощью тождественных преобразований;

  • решать квадратные уравнения и уравнения, сводимые к квадратным с помощью тождественных преобразований;

  • решать дробно-линейные уравнения;

  • решать простейшие иррациональные уравнения: , ;

  • решать уравнения вида ;

  • решать уравнения способом разложения на множители и замены переменной;

  • использовать метод интервалов для решения целых и дробно-рациональных неравенств;

  • решать линейные уравнения и неравенства с параметрами;

  • решать несложные квадратные уравнения с параметром;

  • решать несложные системы линейных уравнений с параметрами;

  • решать несложные уравнения в целых числах.

В повседневной жизни и при изучении других предметов:

  • составлять и решать линейные и квадратные уравнения и уравнения, к ним сводящиеся, системы линейных уравнений и неравенств при решении задач других учебных предметов;

  • выполнять оценку правдоподобия результатов, получаемых при решении линейных и квадратных уравнений и систем линейных уравнений и неравенств при решении задач других учебных предметов;

  • выбирать уравнения, неравенства или их системы, для составления математической модели заданной реальной ситуации или прикладной задачи;

  • уметь интерпретировать полученный при решении уравнения, неравенства или системы результат в контексте заданной реальной ситуации или прикладной задачи

  • Свободно оперировать понятиями: уравнение, неравенство, равносильные уравнения и неравенства, уравнение, являющееся следствием другого уравнения, уравнения, равносильные на множестве, равносильные преобразования уравнений;

  • решать разные виды уравнений и неравенств и их систем, в том числе некоторые уравнения 3 и 4 степеней, дробно-рациональные и иррациональные;

  • знать теорему Виета для уравнений степени выше второй;

  • понимать смысл теорем о равносильных и неравносильных преобразованиях уравнений и уметь их доказывать;

  • владеть разными методами решения уравнений, неравенств и их систем, уметь выбирать метод решения и обосновывать свой выбор;

  • использовать метод интервалов для решения неравенств, в том числе дробно-рациональных и включающих в себя иррациональные выражения;

  • решать алгебраические уравнения и неравенства и их системы с параметрами алгебраическим и графическим методами;

  • владеть разными методами доказательства неравенств;

  • решать уравнения в целых числах;

  • изображать множества на плоскости, задаваемые уравнениями, неравенствами и их системами.

В повседневной жизни и при изучении других предметов:

  • составлять и решать уравнения, неравенства, их системы при решении задач других учебных предметов;

  • выполнять оценку правдоподобия результатов, получаемых при решении различных уравнений, неравенств и их систем при решении задач других учебных предметов

  • составлять и решать уравнения и неравенства с параметрами при решении задач других учебных предметов;

  • составлять уравнение, неравенство или их систему, описывающие реальную ситуацию или прикладную задачу, интерпретировать полученные результаты

Функции

  • Оперировать понятиями: функциональная зависимость, функция, график функции, способы задания функции, аргумент и значение функции, область определения и множество значений функции, нули функции, промежутки знакопостоянства, монотонность функции, чётность/нечётность функции;

  • строить графики линейной, квадратичной функций, обратной пропорциональности, функции вида: , , , ;

  • на примере квадратичной функции, использовать преобразования графика функции y=f(x) для построения графиков функций ;

  • составлять уравнения прямой по заданным условиям: проходящей через две точки с заданными координатами, проходящей через данную точку и параллельной данной прямой;

  • исследовать функцию по её графику;

  • находить множество значений, нули, промежутки знакопостоянства, монотонности квадратичной функции;

  • оперировать понятиями: последовательность, арифметическая прогрессия, геометрическая прогрессия;

  • решать задачи на арифметическую и геометрическую прогрессию.

В повседневной жизни и при изучении других предметов:

  • осуществлять выбор графика реальной зависимости или процесса по его характеристикам;

  • использовать свойства и график квадратичной функции при решении задач из других учебных предметов

  • Свободно оперировать понятиями: зависимость, функциональная зависимость, зависимая и независимая переменные, функция, способы задания функции, аргумент и значение функции, область определения и множество значения функции, нули функции, промежутки знакопостоянства, монотонность функции, наибольшее и наименьшее значения, чётность/нечётность функции, периодичность функции, график функции, вертикальная, горизонтальная, наклонная асимптоты; график зависимости, не являющейся функцией,

  • строить графики функций: линейной, квадратичной, дробно-линейной, степенной при разных значениях показателя степени, ;

  • использовать преобразования графика функции для построения графиков функций ;

  • анализировать свойства функций и вид графика в зависимости от параметров;

  • свободно оперировать понятиями: последовательность, ограниченная последовательность, монотонно возрастающая (убывающая) последовательность, предел последовательности, арифметическая прогрессия, геометрическая прогрессия, характеристическое свойство арифметической (геометрической) прогрессии;

  • использовать метод математической индукции для вывода формул, доказательства равенств и неравенств, решения задач на делимость;

  • исследовать последовательности, заданные рекуррентно;

  • решать комбинированные задачи на арифметическую и геометрическую прогрессии.

В повседневной жизни и при изучении других предметов:

  • конструировать и исследовать функции, соответствующие реальным процессам и явлениям, интерпретировать полученные результаты в соответствии со спецификой исследуемого процесса или явления;

  • использовать графики зависимостей для исследования реальных процессов и явлений;

  • конструировать и исследовать функции при решении задач других учебных предметов, интерпретировать полученные результаты в соответствии со спецификой учебного предмета

Статистика и теория вероятностей


  • Оперировать понятиями: столбчатые и круговые диаграммы, таблицы данных, среднее арифметическое, медиана, наибольшее и наименьшее значения выборки, размах выборки, дисперсия и стандартное отклонение, случайная изменчивость;

  • извлекать, информацию, представленную в таблицах, на диаграммах, графиках;

  • составлять таблицы, строить диаграммы и графики на основе данных;

  • оперировать понятиями: факториал числа, перестановки и сочетания, треугольник Паскаля;

  • оперировать понятиями: случайный опыт, случайный выбор, испытание, элементарное случайное событие (исход), классическое определение вероятности случайного события, операции над случайными событиями, основные комбинаторные формулы;

  • представлять информацию с помощью кругов Эйлера;

  • решать задачи на вычисление вероятности с подсчетом количества вариантов по формулам комбинаторики.

В повседневной жизни и при изучении других предметов:

  • извлекать, интерпретировать и преобразовывать информацию, представленную в таблицах, на диаграммах, графиках, отражающую свойства и характеристики реальных процессов и явлений;

  • определять статистические характеристики выборок по таблицам, диаграммам, графикам, выполнять сравнение в зависимости от цели решения задачи;

  • оценивать вероятность реальных событий и явлений

  • Свободно оперировать понятиями: столбчатые и круговые диаграммы, таблицы данных, среднее арифметическое, медиана, наибольшее и наименьшее значения выборки, размах выборки, дисперсия и стандартное отклонение, случайная изменчивость;

  • выбирать наиболее удобный способ представления информации, адекватный её свойствам и целям анализа;

  • вычислять числовые характеристики выборки;

  • свободно оперировать понятиями: факториал числа, перестановки, сочетания и размещения, треугольник Паскаля;

  • свободно оперировать понятиями: случайный опыт, случайный выбор, испытание, элементарное случайное событие (исход), классическое определение вероятности случайного события, операции над случайными событиями, основные комбинаторные формулы;

  • использовать формулы комбинаторики при решении комбинаторных задач;

  • решать задачи на вычисление вероятности в том числе с использованием формул.

В повседневной жизни и при изучении других предметов:

  • представлять информацию о реальных процессах и явлениях способом, адекватным её свойствам и цели исследования;

  • анализировать и сравнивать статистические характеристики выборок, полученных в процессе решения прикладной задачи, изучения реального явления, решения задачи из других учебных предметов;

  • оценивать вероятность реальных событий и явлений в различных ситуациях

Текстовые задачи

  • Решать простые и сложные задачи разных типов, а также задачи повышенной трудности;

  • использовать разные краткие записи как модели текстов сложных задач для построения поисковой схемы и решения задач;

  • различать модель текста и модель решения задачи, конструировать к одной модели решения несложной задачи разные модели текста задачи;

  • знать и применять оба способа поиска решения задач (от требования к условию и от условия к требованию);

  • моделировать рассуждения при поиске решения задач с помощью граф-схемы;

  • выделять этапы решения задачи и содержание каждого этапа;

  • уметь выбирать оптимальный метод решения задачи и осознавать выбор метода, рассматривать различные методы, находить разные решения задачи, если возможно;

  • анализировать затруднения при решении задач;

  • выполнять различные преобразования предложенной задачи, конструировать новые задачи из данной, в том числе обратные;

  • интерпретировать вычислительные результаты в задаче, исследовать полученное решение задачи;

  • анализировать всевозможные ситуации взаимного расположения двух объектов и изменение их характеристик при совместном движении (скорость, время, расстояние) при решении задач на движение двух объектов как в одном, так и в противоположных направлениях;

  • исследовать всевозможные ситуации при решении задач на движение по реке, рассматривать разные системы отсчёта;

  • решать разнообразные задачи «на части»,

  • решать и обосновывать свое решение задач (выделять математическую основу) на нахождение части числа и числа по его части на основе конкретного смысла дроби;

  • осознавать и объяснять идентичность задач разных типов, связывающих три величины (на работу, на покупки, на движение). выделять эти величины и отношения между ними, применять их при решении задач, конструировать собственные задач указанных типов;

  • владеть основными методами решения задач на смеси, сплавы, концентрации;

  • решать задачи на проценты, в том числе, сложные проценты с обоснованием, используя разные способы;

  • решать логические задачи разными способами, в том числе, с двумя блоками и с тремя блоками данных с помощью таблиц;

  • решать задачи по комбинаторике и теории вероятностей на основе использования изученных методов и обосновывать решение;

  • решать несложные задачи по математической статистике;

  • овладеть основными методами решения сюжетных задач: арифметический, алгебраический, перебор вариантов, геометрический, графический, применять их в новых по сравнению с изученными ситуациях.

В повседневной жизни и при изучении других предметов:

  • выделять при решении задач характеристики рассматриваемой в задаче ситуации, отличные от реальных (те, от которых абстрагировались), конструировать новые ситуации с учётом этих характеристик, в частности, при решении задач на концентрации, учитывать плотность вещества;

  • решать и конструировать задачи на основе рассмотрения реальных ситуаций, в которых не требуется точный вычислительный результат;

  • решать задачи на движение по реке, рассматривая разные системы отсчета




  • Решать простые и сложные задачи, а также задачи повышенной трудности и выделять их математическую основу;

  • распознавать разные виды и типы задач;

  • использовать разные краткие записи как модели текстов сложных задач и задач повышенной сложности для построения поисковой схемы и решения задач, выбирать оптимальную для рассматриваемой в задаче ситуации модель текста задачи;

  • различать модель текста и модель решения задачи, конструировать к одной модели решения сложных задач разные модели текста задачи;

  • знать и применять три способа поиска решения задач (от требования к условию и от условия к требованию, комбинированный);

  • моделировать рассуждения при поиске решения задач с помощью граф-схемы;

  • выделять этапы решения задачи и содержание каждого этапа;

  • уметь выбирать оптимальный метод решения задачи и осознавать выбор метода, рассматривать различные методы, находить разные решения задачи, если возможно;

  • анализировать затруднения при решении задач;

  • выполнять различные преобразования предложенной задачи, конструировать новые задачи из данной, в том числе обратные;

  • интерпретировать вычислительные результаты в задаче, исследовать полученное решение задачи;

  • изменять условие задач (количественные или качественные данные), исследовать измененное преобразованное;

  • анализировать всевозможные ситуации взаимного расположения двух объектов и изменение их характеристик при совместном движении (скорость, время, расстояние), при решении задач на движение двух объектов как в одном, так и в противоположных направлениях, конструировать новые ситуации на основе изменения условий задачи при движении по реке;

  • исследовать всевозможные ситуации при решении задач на движение по реке, рассматривать разные системы отсчёта;

  • решать разнообразные задачи «на части»;

  • решать и обосновывать свое решение задач (выделять математическую основу) на нахождение части числа и числа по его части на основе конкретного смысла дроби;

  • объяснять идентичность задач разных типов, связывающих три величины (на работу, на покупки, на движение). выделять эти величины и отношения между ними, применять их при решении задач, конструировать собственные задач указанных типов;

  • владеть основными методами решения задач на смеси, сплавы, концентрации, использовать их в новых ситуациях по отношению к изученным в процессе обучения;

  • решать задачи на проценты, в том числе, сложные проценты с обоснованием, используя разные способы;

  • решать логические задачи разными способами, в том числе, с двумя блоками и с тремя блоками данных с помощью таблиц;

  • решать задачи по комбинаторике и теории вероятностей на основе использования изученных методов и обосновывать решение;

  • решать несложные задачи по математической статистике;

  • овладеть основными методами решения сюжетных задач: арифметический, алгебраический, перебор вариантов, геометрический, графический, применять их в новых по сравнению с изученными ситуациях.

В повседневной жизни и при изучении других предметов:

  • конструировать новые для данной задачи задачные ситуации с учётом реальных характеристик, в частности, при решении задач на концентрации, учитывать плотность вещества; решать и конструировать задачи на основе рассмотрения реальных ситуаций, в которых не требуется точный вычислительный результат;

  • решать задачи на движение по реке, рассматривая разные системы отсчёта;

  • конструировать задачные ситуации, приближенные к реальной действительности

Тригонометрия



- свободно оперировать понятием радианной меры угла

- знать определения тригонометрических функций, их свойства и графики, в том числе, графики гармонических колебаний



- уметь применять тригонометрические формулы для вычислений, тождественных преобразований, доказательства тождеств и неравенств, решения простейших тригонометрических уравнений

Геометрические фигуры, их свойства

  • Оперировать понятиями геометрических фигур;

  • извлекать, интерпретировать и преобразовывать информацию о геометрических фигурах, представленную на чертежах;

  • применять геометрические факты для решения задач, в том числе, предполагающих несколько шагов решения;

  • формулировать в простейших случаях свойства и признаки фигур;

  • доказывать геометрические утверждения

  • владеть стандартной классификацией плоских фигур (треугольников и четырёхугольников).

В повседневной жизни и при изучении других предметов:

  • использовать свойства геометрических фигур для решения задач практического характера и задач из смежных дисциплин

  • Свободно оперировать геометрическими понятиями при решении задач и проведении математических рассуждений;

  • самостоятельно формулировать определения геометрических фигур, выдвигать гипотезы о новых свойствах и признаках геометрических фигур и обосновывать или опровергать их, обобщать или конкретизировать результаты на новые классы фигур, проводить в несложных случаях классификацию фигур по различным основаниям;

  • исследовать чертежи, включая комбинации фигур, извлекать, интерпретировать и преобразовывать информацию, представленную на чертежах;

  • решать задачи геометрического содержания, в том числе в ситуациях, когда алгоритм решения не следует явно из условия, выполнять необходимые для решения задачи дополнительные построения, исследовать возможность применения теорем и формул для решения задач;

  • формулировать и доказывать геометрические утверждения.

В повседневной жизни и при изучении других предметов:

  • составлять с использованием свойств геометрических фигур математические модели для решения задач практического характера и задач из смежных дисциплин, исследовать полученные модели и интерпретировать результат

Отношения

  • Оперировать понятиями: равенство фигур, равные фигуры, равенство треугольников, параллельность прямых, перпендикулярность прямых, углы между прямыми, перпендикуляр, наклонная, проекция, подобие фигур, подобные фигуры, подобные треугольники;

  • применять теорему Фалеса и теорему о пропорциональных отрезках при решении задач;

  • характеризовать взаимное расположение прямой и окружности, двух окружностей.

В повседневной жизни и при изучении других предметов:

  • Использовать отношения для решения задач, возникающих в реальной жизни

  • Владеть понятием отношения как межпредметным;

  • свободно оперировать понятиями: равенство фигур, равные фигуры, равенство треугольников, параллельность прямых, перпендикулярность прямых, углы между прямыми, перпендикуляр, наклонная, проекция, подобие фигур, подобные фигуры, подобные треугольники;

  • использовать свойства подобия и равенства фигур при решении задач;

  • пользоваться симметриями при решении задач перенести в преобразования.

В повседневной жизни и при изучении других предметов:

  • Использовать отношения для построения и исследования математических моделей объектов реальной жизни

Построения


  • Изображать геометрические фигуры по текстовому и символьному описанию;

  • свободно оперировать чертёжными инструментами в несложных случаях,

  • выполнять построения треугольников, применять отдельные методы построений циркулем и линейкой и проводить простейшие исследования числа решений;

  • изображать типовые плоские фигуры и объемные тела с помощью простейших компьютерных инструментов.

В повседневной жизни и при изучении других предметов:

  • выполнять простейшие построения на местности, необходимые в реальной жизни;

  • оценивать размеры реальных объектов окружающего мира

  • Оперировать понятием набора элементов, определяющих геометрическую фигуру,

  • владеть набором методов построений циркулем и линейкой;

  • проводить анализ и реализовывать этапы решения задач на построение.

В повседневной жизни и при изучении других предметов:

  • выполнять построения на местности;

  • оценивать размеры реальных объектов окружающего мира

Измерения и вычисления


  • Оперировать представлениями о длине, площади, объёме как величинами. Применять формулы площади, объёма при решении многошаговых задач, в которых не все данные представлены явно, а требуют вычислений, оперировать более широким количеством формул длины, площади, объёма, вычислять характеристики комбинаций фигур (окружностей и многоугольников) вычислять расстояния между фигурами, применять тригонометрические формулы для вычислений в более сложных случаях, проводить вычисления на основе равновеликости и равносоставленности;

  • проводить простые вычисления на объёмных телах;

  • формулировать простейшие задачи на вычисление длин, площадей и объёмов и решать их.

В повседневной жизни и при изучении других предметов:

  • проводить вычисления на местности;

  • применять формулы при вычислениях в смежных учебных предметах, в окружающей действительности

  • Свободно оперировать понятиями длина, площадь, объём, величина угла как величинами, использовать равновеликость и равносоставленность при решении задач на вычисление, самостоятельно получать и использовать формулы для вычислений площадей и объёмов фигур, свободно оперировать широким набором формул на вычисление при решении сложных задач, в том числе и задач на вычисление в комбинациях окружности и треугольника, окружности и четырёхугольника, а также с применением тригонометрии;

  • самостоятельно формулировать гипотезы и проверять их достоверность.

В повседневной жизни и при изучении других предметов:

  • свободно оперировать формулами при решении задач в других учебных предметах и при проведении необходимых вычислений в реальной жизни

Преобразования


  • Оперировать понятием движения и преобразования подобия, владеть приёмами построения фигур с использованием движений и преобразований подобия, применять полученные знания и опыт построений в смежных предметах и в реальных ситуациях окружающего мира;

  • строить фигуру, подобную данной, пользоваться свойствами подобия для обоснования свойств фигур;

  • применять свойства движений для проведения простейших обоснований свойств фигур.

В повседневной жизни и при изучении других предметов:

  • применять свойства движений и применять подобие для построений и вычислений

  • Оперировать движениями и преобразованиями как межпредметными понятиями;

  • оперировать понятием движения и преобразования подобия для обоснований, свободно владеть приемами построения фигур с помощью движений и преобразования подобия, а также комбинациями движений, движений и преобразований;

  • использовать свойства движений и преобразований для проведения обоснования и доказательства утверждений в геометрии и других учебных предметах.

В повседневной жизни и при изучении других предметов:

  • применять свойства движений и применять подобие для построений и вычислений

Векторы и координаты на плоскости

  • Оперировать понятиями вектор, сумма, разность векторов, произведение вектора на число, угол между векторами, скалярное произведение векторов, координаты на плоскости, координаты вектора;

  • выполнять действия над векторами (сложение, вычитание, умножение на число), вычислять скалярное произведение, определять в простейших случаях угол между векторами, выполнять разложение вектора на составляющие, применять полученные знания в физике, пользоваться формулой вычисления расстояния между точками по известным координатам, использовать уравнения фигур для решения задач;

  • применять векторы и координаты для решения геометрических задач на вычисление длин, углов.

В повседневной жизни и при изучении других предметов:

  • использовать понятия векторов и координат для решения задач по физике, географии и другим учебным предметам

  • Свободно оперировать понятиями вектор, сумма, разность векторов, произведение вектора на число, скалярное произведение векторов, координаты на плоскости, координаты вектора;

  • Владеть векторным и координатным методом на плоскости для решения задач на вычисление и доказательства;

  • выполнять с помощью векторов и координат доказательство известных ему геометрических фактов (свойства средних линий, теорем о замечательных точках и т.п.) и получать новые свойства известных фигур;

  • использовать уравнения фигур для решения задач и самостоятельно составлять уравнения отдельных плоских фигур.

В повседневной жизни и при изучении других предметов:

  • использовать понятия векторов и координат для решения задач по физике, географии и другим учебным предметам

История математики


  • Характеризовать вклад выдающихся математиков в развитие математики и иных научных областей;

  • понимать роль математики в развитии России

  • Понимать математику как строго организованную систему научных знаний, в частности владеть представлениями об аксиоматическом построении геометрии и первичными представлениями о неевклидовых геометриях;

  • рассматривать математику в контексте истории развития цивилизации и истории развития науки, понимать роль математики в развитии России

Методы математики

  • Использовать основные методы доказательства, проводить доказательство и выполнять опровержение;

  • применять основные методы решения математических задач;

  • на основе математических закономерностей в природе, характеризовать эстетику окружающего мира и произведений искусства;

  • применять простейшие программные средства и электронно-коммуникационные системы при решении математических задач

  • Владеть знаниями о различных методах обоснования математических утверждений и самостоятельно применять их;

  • владеть типологией задач и пользоваться этой типологией при выборе метода решения;

  • характеризовать произведения искусства с учётом математических закономерностей в природе, использовать математические закономерности в самостоятельном творчестве



РЕКОМЕНДАНИИ ПО ОСНАЩЕНИЮ УЧЕБНОГО ПРОЦЕССА


Оснащение процесса обучения математике обеспечивается библиотечным фондом, печатными пособиями, а также информационно-коммуникативными средствами, экранно-звуковыми пособиями, техническими средствами обучения, учебно-практическим и учебно-лабораторным оборудованием.

Каталог: sites -> default -> files -> userdata
files -> Народная художественная культура. Профиль Теория и история народной художественной культуры
files -> Отчет о научно-исследовательской работе за 2014 год ростов-на-Дону 2014
files -> Учебно-методический комплекс дисциплины философия для образовательной программы по направлениям юридического факультета: Курс 1
files -> Цветков Андрей Владимирович, кандидат психологических наук, доцент кафедры клинической психологии программа
files -> Программа итогового (государственного) комплексного междисциплинарного экзамена по направлению 521000 (030300. 62) «Психология»
userdata -> 5 открытых направлений тем итогового сочинения на 2017/18 учебный год


Поделитесь с Вашими друзьями:
1   ...   306   307   308   309   310   311   312   313   ...   518


База данных защищена авторским правом ©znate.ru 2019
обратиться к администрации

    Главная страница