Реферат Великие математики древности: Пифагор, Евдокс, Архимед



Скачать 352.71 Kb.
страница7/10
Дата02.01.2018
Размер352.71 Kb.
ТипРеферат
1   2   3   4   5   6   7   8   9   10
Математика пифагорейцев
Из-за отсутствия документального материала нет возможности установить последовательные этапы дальнейшей двухвековой разработки пифагорейцами математических знаний, первоначально перенятых ими у египтян и вавилонян.

Пифагорейцы изображали числа в виде точек, группируемых в геометрические фигуры. Так возникло понятие «фигурных чисел», в котором нашла свое отражение тесная связь, существующая между понятиями числа и пространственной протяженностью. Например, «квадратные числа» 1, 4, 9 изображались так:









«Треугольные числа» 1, 3, 6 представлялись в таком виде:










У пифагорейцев точка, изображавшая единицу, была дальше неделима – она была математическим атомом; сама точка определялась как единица, обладающая положением. Для того чтобы быть отличимыми друг от друга, единицы-точки должны были отделяться пространством, каждая точка должна была иметь вокруг себя «поле». Благодаря этому каждое число можно было изображать не только при помощи точек, но и квадратных полей, или тех и других, как например, число 3 в виде


























Таким образом, в основе здесь лежит понятие числа, которое лишь изображается фигурой: геометрия подчинена арифметике.

Фигурные числа отражали своим видом способ, которым они были арифметически порождены, т. е. были ли они получены путем сложения или умножения. Пифагорейцы и продолжатели их традиций рассматривали преимущественно числа-суммы, между тем Евклид и его школа допускали геометрические изображения лишь для чисел-произведений.

Простейший и древнейший пример арифметического понятия (изображаемого единицами-точками) – это различение четного (парного) и нечетного (непарного). Противоположность нечетного и четного представляет одну из десяти пар противоположностей, считавшихся пифагорейцами философскими категориями.

Числа-произведения делились пифагорейцами на «прямолинейные», т. е. простые числа, которые, так как они не разлагаются на множители, изображались точками, расположенными вдоль отрезка; «плоскостные числа», разлагающиеся на два множителя и изображающиеся точками, образующими прямоугольник или квадрат, и «телесные числа», разлагающиеся на три множителя и изображающиеся точками, образующими параллелепипед или куб.

Среди чисел-сумм пифагорейцы выделяли «многоугольные числа», которые изображались точками, распложенными в виде правильных геометрических тел. Таким образом получали ряды «треугольных», «квадратных», «пятиугольных» и

других «фигурных» чисел. Каждый такой ряд представляет последовательные суммы арифметической прогрессии с разностями 1, 2, 3 и т. д.

На рис. 1.2 изображены «треугольные» числа 1, 1+2=3, 1+2+3=6, 1+2+3+4=10 (общее выражение этих чисел 1+2 +3+... + п= ).

Из треугольных чисел пифагорейцы получали и все квадратные числа, способом, который указан на чертеже.

На рис. 1.3 показаны «квадратные» числа 1, 1+3 = 4, 1+3+5=9 (общее выражение этих чисел 1+3+5+..,+(2n – 1) = п2; наше выражение «квадрат» для числа n2 является пережитком пифагорейской терминологии).

Тем же путем, присоединяя друг к другу три равных треугольных числа, получали пятиугольные числа и т. д. На рис. 1.4 изображены




«пятиугольные» числа 1, 1+4=5, (общее выражение этих чисел 1 + 4 + 7 + . . . + (Зn – 2) = ).

кий математик II в. до н. э. Гипсикл показал, что n-е m-угольное число равно . Пифагорейцы определили также «кубические» числа 1, 8, 27,...(откуда наше выражение «куб» для п3).

Далее определялись «пирамидальные числа», образуемые сложением многоугольных чисел. Простейшие из них, «четырехгранные числа», получаются из треугольных чисел 1 = 1, 1+3 = 4, 1+3 + 6=10, 1+3 + 6+10 = 20... и изображаются в виде пирамид с треугольным основанием. Разумеется, что все фигурные числа и их свойства не были открыты сразу, а постепенно, в течение нескольких веков.

С дальнейшим развитием математики фигурные числа потеряли значение, за одним, однако, исключением: это квадратные и кубические числа, давшие возможность подойти к вычислению площадей и объемов, т. е. к решению собственно геометрических задач. Заменяя единицы-точки полями, мы видим, что квадратные числа, рассматриваемые как числа-суммы, изображаются так:



Часть фигуры, соответствующая нечетному числу, от прибавления которого к квадратному числу получается следующее квадратное число, называлась «гномон»: Обозначая первоначально «того, кто знает, различает», затем простейший астрономический инструмент – колышек, перпендикулярный к горизонтальной плоскости (циферблату солнечных часов), образующий прямой угол со своей тенью, – слово «гномон» употреблялось позднее расширительно. Им называли такое прибавление к геометрической фигуре, которое увеличивает, но не меняет ее (например, гномоном треугольника может оказаться трапеция). Между тем пифагорейцы, исходя из квадрата, отождествляли «гномон» с прямоугольной и обязательно нечетной фигурой.

Рассматривая последовательность гномонов, пифагорейцы извлекали отсюда ряд свойств чисел, например, сумма двух последовательных нечетных чисел равна учетверенному соответствующему (натуральному) числу 1+3=4, 3+5=4, 5+7=4 и др. В то время как мы легко доказываем эти и подобные свойства, например последнее, при помощи простых алгебраических преобразований (2n–1)+(2n+1)=4n, пифагорейцы лишь проверяли их при помощи наглядной фигуры.

Наряду с квадратными числами большое значение у пифагорейцев имели «продолговатые числа» – числа вида п(п+1). Разумеется, что число, принадлежащее одной категории, могло вместе с тем принадлежать и другой. Пифагорейцы знали также «подобные числа», например, 6=23, 24=46, 54=69, изображаемые прямоугольниками с пропорциональными сторонами. Эти числа обладают рядом интересных свойств: например, произведение двух «подобных чисел» является «квадратным числом».

Изучение чисел-сумм, изображаемых фигурами, составленными из единиц-точек, послужило основанием для суммирования числовых рядов, которым успешно занимался Архимед. Изучение «прямолинейных чисел» дало толчок к возникновению теории простых чисел, важные результаты которой были получены Евклидом, использовавшим в теоретико-числовых книгах своих «Начал» многие понятия, введенные пифагорейцами.

Различая, кроме простых чисел, составные и взаимно простые (первые между собой, т. е. не имеющие общего делителя, например, 14 и 55), пифагорейцы, и, с некоторыми отклонениями, греческие математики, вообще уделяли также много внимания дальнейшей классификации четных и нечетных чисел, различая (как позже Евклид) четно-четные, четно-нечетные, нечетно-нечетные и т. п. числа. При этом соблюдавшие пифагорейскую традицию не включали в нечетные числа, да и в числа вообще, 1, а в четные – 2, считая их «началами» чисел и помещая вне ряда чисел.

Пифагорейцы занимались также вопросом об отношении чисел к сумме своих делителей. Под делителями числа понимались все его делители, простые и составные, включая 1, но исключая само число. Если сумма делителей оказывалась больше самого данного числа, то число называли «сверхсовершенным», если она была равна ему – «совершенным», а если меньше его – «недостающим».

Наконец, пифагорейцами рассматривались «дружественные числа», т. е. такие Наконец, пифагорейцами рассматривались «дружественные числа», т. е. такие два числа, каждое из которых равно сумме делителей другого. Неоплатоник сириец Ямблих (около 250–325 гг. н. э.) приписывает Пифагору открытие дружественных чисел 220 и 284, единственной пары, известной в древности. В Средние века считали, что талисманы с дружественными числами способны укрепить близость между людьми. Арабский математик Сабит ибн Корра (826–901 гг.) нашел правило образования дружественных чисел, которое было забыто и вновь открыто Ферма и опубликовано (без доказательства) Декартом (1638 г.).

Пифагорейцы исследовали неопределенное уравнение x2+y2=z2, целые решения которого поэтому называют «пифагоровыми тройками», и нашли бесконечно много таких троек, имеющих вид


Правила, которые мы записываем формулами

и которые охватывают всю совокупность решений этого уравнения, встречаются у Диофанта, но должны были быть известны задолго до него.

Ранние пифагорейцы связывали с целыми числами и различные мистические спекуляции. Так, особенно совершенным представилось им число 10 – декада, так как 10 = 1 + 2 + 3 + 4, но 1 есть единица (монада), Матерь всех чисел, 2 выражает линию, 3 – треугольник, а 4 – пирамиду. Это древнее рассуждение замечательно тем, что числа 2, 3 и 4 связываются с размерностью геометрических образов. Две точки определяют прямую – это одномерный образ, три точки (не лежащие на одной прямой) – треугольник или плоскость – двумерный образ; наконец, 4 точки (не лежащие в одной плоскости) – пирамиду – трехмерный образ. Кроме того, среди чисел, меньших 10, столько же простых, сколько составных, и т. д. Исходя из замечательных свойств декады, пифагорейцы считали, что число небесных сфер должно быть равно 10, а так как их насчитывали только 9 (сферы неба, Солнца, Луны, Земли, Меркурия, Венеры, Марса, Юпитера и Сатурна), то была придумана новая планета – Противоземлие, которая вращалась по десятой сфере. Аналогичные мистические спекуляции с числами были распространены и среди ученых XV–XVI вв., и вообще они характерны для ранних стадий развития науки.




Каталог: sites -> default -> files -> files -> referats -> mathematics
files -> Пояснительная записка Экзамен по дисциплине «Онтология и теория познания»
files -> Философско-антропологические парадигмы и их роль в развитии образования
files -> Практические задания по философии для студентов всех специальностей
files -> Рабочая программа практики к ооп от №
files -> Рабочая программа практики к ооп от №
files -> Программа итоговой государственной аттестации выпускников к ооп от № по направлению 040100. 62 Социология
files -> Специализированного модуля по выбору студента, слушателя
files -> Учебное пособие для студентов высших учебных заведений и преподавателей средней школы
mathematics -> Выдающиеся математики Блез Паскаль Паскаль


Поделитесь с Вашими друзьями:
1   2   3   4   5   6   7   8   9   10


База данных защищена авторским правом ©znate.ru 2019
обратиться к администрации

    Главная страница