Переформулировка квантовой механики Суть проблемы



Скачать 365.14 Kb.
страница5/5
Дата12.04.2018
Размер365.14 Kb.
1   2   3   4   5
4. Квантовая теория относительности

Многочисленные попытки ввести в рамках специальной теории относительности фундаментальную длину, чтобы построить свободную от расходимостей теорию, показывают, что это неизбежно приводит к нарушению принципа причинности. Для того, чтобы совместить теорию относительности с квантовой механикой, нужно проквантовать само пространство и время.

Отправной точкой в построении квантовой теории относительности служит принцип неопределенностей Гейзенберга. Самый известный спор о принципе неопределенностей произошел на пятом Сольвеевском международном конгрессе ученых в 1927 году в Брюсселе. Спорили Альберт Эйнштейн и Нильс Бор. Спорили о том, вероятностна ли в основе своей Вселенная. По легенде, именно на этом конгрессе Эйнштейн произнес свое знаменитое «Бог в кости не играет»

Через два года после конгресса, основательно обдумав создавшееся положение, Эйнштейн, совместно с Подольским и Розеном, предлагает мысленный эксперимент, по его мнению, напрочь опровергающий реальность существования волновой функции, квадрат модуля которой, как известно, определяет вероятность нахождения электрона в точке x, y, z трехмерного пространства.

Суть эксперимента состоит в следующем. Пусть система состоит из двух электронов и пусть в какой-то момент времени электроны находятся на большом (известном) расстоянии друг от друга. Пусть также электроны обладают известным суммарным импульсом. Если измерить импульс первого электрона, то импульс второго электрона можно найти немедленно, ведь сумма импульсов известна. С другой стороны, если кто-нибудь измерил положение первого электрона, то мгновенно становится известным и положение второго. Это означает, что, наблюдая состояние первого электрона, мы можем мгновенно изменить волновую функцию так, что второй электрон станет занимать определенное положение и обладать определенным импульсом, несмотря на то, что мы к нему и близко не подходили.

Интересно, что подобный эксперимент был, в конце концов, проведен и показал, что все происходит именно так, как описал Эйнштейн, и что волновая функция изменяется практически мгновенно. Один из экспериментов проводился в 2008 году на фотонах, находящихся в определенном «спутанном состоянии». Ученые университета Женевы разделяли пары спутанных фотонов и отправляли их по оптическому волокну на два детектора, находящиеся в противоположных направлениях на расстоянии 9 километров от излучателя. Детекторы на входе и выходе определяли «цвета» фотонов (их волновые характеристики). Измерения повторялись неоднократно в течение 12 часов. Оказалось, что физические свойства фотонов менялись одинаково и синхронно. Если один фотон становился «красным», то второй – тоже. Не удалось засечь время запаздывания, но в пределах точности аппаратуры можно было утверждать, что волновая функция изменялась со скоростью, превосходящей скорость света не менее чем в 10000 раз. Обе частицы как бы следуют сигналу внешнего «регулировщика движения».

Ни одна физическая теория дать удовлетворительного объяснения результатов экспериментов не смогла. Ведь если в природе существуют явления, при которых скорость передачи взаимодействий бесконечно велика, то тела могут действовать друг на друга на расстоянии и при отсутствии материи между ними. Такое воздействие тел друг на друга в физике называют дальнодействием. Когда же тела действуют друг на друга с помощью материи, находящейся между ними, то их взаимодействие называется близкодействием.

У многих физиков нет привычки говорить «не знаю», когда проблема не решается доступными им средствами, поэтому неоднократно заявлялось, что парадокс Эйнштейна, Подольского и Розена разрешен, но всякий раз оказывалось, что это не так.

По существу проблема сводится все к тем же парадоксам Зенона и требует для своего разрешения принятия одного из двух постулатов: либо пространство и время дискретны (позиция Бора), либо пространство и время непрерывны (позиция Эйнштейна). Ошибочность позиции Бора состоит в том, что признавая дискретность трехмерного пространства и времени, он допускает бесконечную скорость передачи взаимодействий в нем.

Для передачи воздействия одного тела на другое через промежуточную среду, необходимо некоторое время, так как любые процессы в материальной среде передаются от точки к точке с конечной и вполне определенной скоростью. В специальной теории относительности утверждается, что нет скорости передачи взаимодействий больше, чем м /с. Ошибочность позиции Эйнштейна состоит в том, что признавая непрерывность пространства и времени (пространство и время нулевого числа измерений), он ограничивает скорость передачи взаимодействий в нем.

В § 3 мы показали, что специальная теория относительности описывает лишь один частный случай из множества фазовых пространственно-временных преобразований. Наше трехмерное пространство, в котором происходит преобразование двумерного пространства в одномерное, не является абсолютной пустотой, именно поэтому м/c. Из-за различного соотношения пространства и времени в квантах материи, плотность пространства скачкообразно уменьшается при переходе к пространствам большего числа измерений. Забегая вперед скажем, что в пространстве четвертого числа измерений, например, все процессы протекают в раз быстрее, чем в нашем трехмерном пространстве.

Макс Планк предложил в качестве естественных единиц использовать единицы, построенные из фундаментальных констант:



= 1,6 м

кг

c

Легко убедиться, что размерности планковской длины, массы, и времени соответствуют размерностям абсолютной системы измерения физических величин. Хуже обстоит дело с численными значениями фундаментальных планковских величин. В области значений, достигнутых современной физикой, эти величины имеют порядок: ~ м, ~ c. Можно предположить, что мы еще не достигли планковских значений длины и времени, но что делать с планковской массой? Ведь планковская масса – это масса обычной пылинки, состоящей из миллионов атомов, и поэтому она не может быть фундаментальной массой. На самом деле ситуация еще хуже.

Мы установим, что гравитационная постоянная не такая уж фундаментальная, она есть производная от скорости света. Более того, так как скорость света имеет производную, отличную от нуля, то она тоже является величиной переменной, и быть фундаментальной константой никак не может. Но и это еще не все. Чтобы соблюдался закон сохранения энергии, вместе со скоростью света должна изменяться и постоянная Планка. Похоже на то, что в природе вообще нет ничего постоянного и правы релятивисты, утверждающие, что все относительно. Но это не так. Чтобы соблюдался закон сохранения энергии, скорость света и постоянная Планка в должны изменяться так, чтобы

м ~

Так как нет силы, меньше, чем h, и нет скорости, больше чем с, (мы рассматриваем с с позиций наблюдателя, находящегося в трехмерном пространстве), то величина , принадлежащая пространству первого измерения, является той самой фундаментальной длиной, поисками которой квантовая механика занималась с момента своего появления:



~ (4.1)

Итак, (4.1) дает нам минимальное значение физических величин пространства первого измерения. В теории многомерных пространств принцип неопределенностей Гейзенберга можно сформулировать следующим образом: минимальное значение физических величин пространства пятого измерения равно постоянной Планка:



~ (4.2)

Зная и , не составляет труда найти формулу для вычисления минимальных значений физических величин пространства любого числа измерений, такую, чтобы размерности физических величин соответствовали размерностям пространства:



(4.3)

Принцип неопределенностей Гейзенберга является частным случаем формулы (4.3) при , и в одном из возможных вариантов может быть записан в виде:



(4.4)

где: и - неопределенности в определении координаты и скорости тела, имеющего массу .

Неопределенности никак не связаны с наблюдателем, они полностью определяются квантовыми свойствами пространства-времени. В квантовой теории относительности наблюдатель выведен из наблюдаемого пространства в пространство большей размерности и никак не может влиять на результаты измерений.

Причина, по которой специалист в области квантовой механики Р.Фейнман мог совершенно спокойно сказать, что квантовую механику не понимает никто, кроется в том, что основы квантовой механики были сформулированы не полностью.

Формула (4.3) – это формула общего члена геометрической прогрессии, образующей некоторое гипердействительное число. Отношение минимальных порций (квантов) двух соседних пространств есть величина постоянная:

(4.5)

Справедливость (4.5) доказывается прямой подстановкой значений и в формулу (4.3)

При фазовых пространственно-временных преобразованиях изменяется размерность пространства. Процесс происходит с соблюдением закона сохранения материи, поэтому увеличение (уменьшение) количества пространства приводит к уменьшению (увеличению) количества времени в материи:

(4.6)

Из (4.5) и (4.6) следует, что максимальная скорость протекания процессов в двух соседних пространствах отличается в число раз:



(4.7)

Формула (4.7) не отменяет принципа относительности, физические процессы протекают одинаково в пространствах любой размерности. На основании (4.7) можно лишь утверждать, что в пространствах различной размерности процессы протекают с различной максимальной скоростью. Увеличение времени жизни элементарных частиц объясняется не только замедлением (увеличением масштаба) времени, но и сокращением масштаба пространства.

Значение максимальной скорости изменяется скачкообразно при изменении размерности пространства-времени. Постулат постоянства скорости света действует лишь в пространстве фиксированного числа измерений. Переходя к пространству большей размерности, мы принимаем за ноль скорость света пространства меньшей размерности.

Линейные размеры квантов абсолютных (не искривленных) пространств найдем, исходя из чисто геометрических соображений:



(4.8)

По (4.8) получаем, что квант абсолютного одномерного пространства – это отрезок прямой длиной 7,37 м; квант двумерного пространства – это квадрат со стороной 1,13 м; квант трехмерного пространства – это куб со стороной 1,30 м.

Линейные размеры квантов абсолютного пространства-времени связаны с соответствующими размерами времени соотношением:

(4.9)

Из (4.9) следует, что минимально возможная продолжительность процессов в пространстве первого измерения составляет 2,45 с; в пространстве второго измерения – 3,76 с; а в пространстве третьего измерения – 4,34 с

Радиус кванта замкнутого (равномерно искривленного) пространства согласно (3.6):

(4.10)

Число квантов в замкнутом пространстве:



(4.11)

Из (4.3) и (4.11) следует, что энергия, связывающая кванты пространства-времени в единую физическую систему, равна:



(4.12)

Эта же энергия выделяется при фазовых пространственно-временных преобразованиях . Формула энергии Эйнштейна есть частный случай формулы (4.12) при . По формуле Эйнштейна мы извлекаем энергию связи квантов двумерного пространства на атомных электростанциях. Но энергия связи есть и у квантов трехмерного пространства, или, как его сейчас называют, физического вакуума:



Можно вычислить, что в одном кубическом метре трехмерного пространства сосредоточена энергия, эквивалентная энергии 1130 тонн тротила. Если мы научимся расщеплять кванты вакуума, то получим неисчерпаемый источник энергии. Помимо всего прочего, мы получим возможность не создавать большие запасы энергии на космических кораблях, а черпать ее прямо из космического пространства.

В теории многомерных пространств можно рассматривать дробные размерности пространства (рис.1). Широкое применение дробных интегралов и производных сдерживается отсутствием их четкого физического истолкования, такого, например, как у обыкновенного интеграла и обыкновенной производной.

В классической геометрии нет промежуточных объектов между точкой ( ) и отрезком прямой ( ), между отрезком прямой и квадратом ( ) и так далее. В общем случае значение суммарной дробной размерности находится по формуле:



Неподвижное двумерное пространство имеет размерность , это же пространство, движущееся со скоростью света, имеет размерность , а его суммарная дробная размерность при равна:



1,83

Целые показатели размерности бывают только у неподвижных пространств. Это предельный идеальный случай, который мы можем представить себе только теоретически, ведь реальное пространство – время без движения не существует.

Зачастую дробные показатели размерности считают противоестественными. Такой взгляд стал возможным лишь из-за того, что показатели размерности в большинстве физических процессов мало отличаются от целых чисел ввиду малых скоростей движения реальных физических объектов.

Дробные степени в показателях размерностей возникают также при описании фрактальных (разномасштабных, подобных целому) сред. В фрактальной среде, в отличие от сплошной среды, случайно блуждающая частица удаляется от места старта медленнее, так как не все направления движения становятся для нее доступными. Замедление диффузии в фрактальных средах настолько существенно, что физические величины начинают изменяться медленнее первой производной и учесть этот эффект можно только в интегрально – дифференциальном уравнении, содержащем производную по времени дробного порядка

Числа, обратные бесконечно малым, есть числа бесконечно большие. Например, число, обратное , дает максимальное значение физических величин пространства минус первого измерения, то есть, времени:

Так как образуют геометрическую прогрессию, то и числа должны образовывать геометрическую прогрессию. Кроме того, размерности должны соответствовать размерностям физических величин в абсолютной системе измерения. Всем этим требованиям удовлетворяет формула



(4.13)

Формула (4.3) описывает физические пространства отрицательной кривизны микромира, а формула (4.13) – пространства положительной кривизны Вселенной. Численные значения максимальных и минимальных значений физических величин приведены в табл.2.



, ( - это канторовские абсолютные конкретные (существующие в природе) упорядоченные множества. Это те самые множества, существование которых отрицается противниками теории множеств. Верхние индексы означают мощности множеств. , а также и - это канторовские абсолютные абстрактные множества. Кантор был уверен, что абсолютная бесконечность рано или поздно проявится в законах природы. Можно лишь констатировать, что он не ошибся.

Существование у физических и геометрических пространств минимальных и максимальных значений накладывает ограничения на применение обычной математики и логики. Если не учитывать ограничения, то 7 Ч 6 всегда равно 42. Заметим, что как у сомножителей, так и у их произведения размерность соответствует размерности материи, следовательно обычная математика работает с безразмерными точными числами от нуля до .

В геометрии Евклида у чисел появляется размерность м0, м1, м2 … , поэтому складывать можно только числа одинаковой размерности. В геометрии Лобачевского накладывается ограничение на минимальные, в геометрии Римана – на максимальные, а в геометрии теории многомерных пространств – как на минимальные, так и на максимальные значения чисел.

С учетом ограничений правильной следует считать запись:



м3 м1Ч6м2 = 42м3) = 1,22 м3

Мы обычно отбрасываем левые и правые части неравенств ввиду того, что чрезвычайно малы, а невообразимо велики. В квантовом микромире пренебрежение неопределенностями может привести к ошибкам. При устойчивых физических процессах и сходимости к определенному результату, неопределенности должны быть достаточно малыми, чтобы можно было использовать обычную логику и математику.

В неустойчивых процессах неопределенности должны приводить к полной «размытости» результата, что делает возможным применение традиционных вероятностных методов квантовой механики. Если процесс неустойчивый, то малая «размытость» приводит к неопределенности результата.

В любом случае следует остановиться, достигнув или .

Наличие неопределенностей делает возможным применение так называемой «целесообразной логики». Целесообразная логика не претендует на роль главной логической конструкции. Она определяет область применимости известных вариантов неклассической логики, таких как конструктивная, релевантная (уместная), многозначная и нечеткая логика. В этой логической системе высказывание А = В верно или неверно в зависимости от того, сколь велика разность А – В и препятствует ли это достижению цели.

В рамках целесообразной логики проблема осла, стоящего между двумя стогами сена, решается путем перехода к рассмотрению ансамбля ослов. Ослы располагаются не точно посредине, а в некотором пространстве между стогами. В этом случае ослы распределятся на две равные группы и пойдут по кратчайшему пути, одни направо, а другие налево. Такое поведение ослов целесообразно. Вопрос о том, куда пойдет каждый конкретный осел ставить нецелесообразно. В этом и состоит плата за переход к вероятностным методам вычислений.

В рамках классической логики осел останется на месте и умрет от голода. Такое поведение осла нецелесообразно. При применении целесообразной логики, как и при применении обычной логики, вычисления следует прекратить, достигнув или . Мы не имеем права переходить границы научного познания.

Следует обратить внимание на одно важное обстоятельство: мы переходим к вероятностным вычислениям не из-за того, что достигли , а из-за того, что достигли предела точности наших приборов. Сторонники копенгагенской трактовки квантовой механики поторопились объявить, что физика вышла на минимальные значений физических величин, ограничивающих действие физических законов и применение обычной логики. В связи с этим неправильно считать, что электрон и другие элементарные частицы не обладают внутренней структурой. Возможно построение механических моделей электрона и элементарных частиц из строительных блоков одномерного пространства (струны длиной м) двумерного пространства (сферы площадью м2) и трехмерного пространства (кубики объемом м3 ).

Более того, у нас появляется возможность дать математическое определение и систематизировать некоторые физические величины, ранее такого определения не имевшие.

- материя: ;

- эфир: . В эфире взаимодействия либо не передаются ( ), либо передаются мгновенно ( ), лишены смысла понятия пространственной и временной протяженности, часть равна целому, начало совмещено с концом, бесконечно большое равно бесконечно малому. В эфире не соблюдается принцип причинности. Необычность физических свойств эфира привела к отказу от него в начале XX века;

- физический вакуум: . Это трехмерное пространство без вещества и поля



Формула (4.13) расширяет действие принципа неопределенностей Гейзенберга на максимальное значение всех физических величин. Из (4.3) и (4.13) следует, что принцип неопределенностей Гейзенберга – это лишь частный случай неопределенностей значений физических величин пространства пятого измерения и должен записываться в виде:

(4.14)

Если - число измерений движущегося пространства, то при теория многомерных пространств дает теорию суперструн, при - специальную, а при - общую теорию относительности.
Каталог: pubfiles
pubfiles -> Есть ли душа у человека и материальна ли она? Библия, Иов, 38 глава
pubfiles -> Во времена Джордано Бруно под «множественностью миров» иногда понимали
pubfiles -> Эффекты распространения света на большие расстояния
pubfiles -> Элементарный объем
pubfiles -> Феномен жизни
pubfiles -> Темная энергия, эфир, электромагнитное поле и физический вакуум как излишние сущности
pubfiles -> Теория единого поля
pubfiles -> Философские основы естествознания
pubfiles -> Время, взаимодействие объектов, пространство


Поделитесь с Вашими друзьями:
1   2   3   4   5


База данных защищена авторским правом ©znate.ru 2017
обратиться к администрации

    Главная страница