Математические модели канала связи


Математические модели канала связи



страница2/9
Дата10.05.2018
Размер1.05 Mb.
1   2   3   4   5   6   7   8   9
Математические модели канала связи.



    1. Модели каналов связи с постоянными параметрами.

Линия связи объединяет физическую среду, в которой распространяется сигнал, и аппаратуру, используемую для его фильтраци и ретрансляции. Примерами могут служить проводные и спутниковые, радио- и гидроакустические линии связи. НК может рассматриваться как некоторая математическая модель реальной линии связи. Как и всякая модель,НК дает ее приближенное описание. Модель отражает наиболее существенные особенности физических процессов, которые имеют место в реальной линии и приводят к искажениям передаваемых по ней сигналов.

В результате искажений элементы множества Y выходных сигналов отличаются от соответствующих элементов множества X сигналов на входе. Искажения могут быть как детерминированными (однако совсем необязательно известными нам точно ), так и случайными. Примерами искажений первого типа являются линейные искажения в линиях с неидеальными частотными характеристиками, нелинейные искажения, обусловленные наличием нелинейных элементов в каналообразующей аппаратуре, а также уход частоты, вызванный расхождением частот в генераторах передающего и приемного устройств. Ко второй группе относятся искажения, вызванные влиянием как аддитивных (флуктуационных, импульсных, гармонических, переходных), так и мультипликативных помех. Примерами последних служат замирания в коротковолновых радиолиниях, допплеровские сдвиги частоты в спутниковых линиях, кратковременные прерывания сигнала, а также медленные я скачкообразные изменения уровня, фазы и частоты сигнала в проводных линиях связи. С учетом ограничений на допустимые значения средней и пиковой мощностей входных сигналов большинство реальных линий можно описать с помощью модели, показанной на рис.2.1. Используя для описания линейной системы импульсную переходную функцию (ИПФ) h(t,τ)x, сигнал на выходе канала y(t) ,являющийся откликом на входной сигнал x(t), запишем в виде



, (2.1а)

где n(t) определяется совокупностью аддитивных помех.



d:\дисер\мое\1.png

Рис. 2. 1. Модель линии связи

Если моделирование линейной системы осуществляется с помощью дифференциального уравнения, то выходной сигнал y(t) можно представить как результат решения уравнений состояния (1.1), которые в данном случае принимают вид x)




t≥0 (2.1б)

где U(t)- вектор состояний канала, F(t) и G(t) - матрицы состояний, элементы которых определяются по коэффициентам дифференциального уравнения, C(t) - матрица наблюдения, В уравнениях (2.1) начальные условия приняты нулевыми. Канал, моделируемый с помощью (2.1), называется линейным стохастическим каналом (ЛСК) и охватывает широкий класс реальных каналов. В общем случае параметрическая передаточная функция (ППФ) K(t,jf) представляет случайную функцию времени t и частоты f. Полное описание канала требует задания вероятностных характеристик как случайной функции K(t,jf) так и комплекса аддитивных помех n(t)качестве примера рассмотрим модель линейного ква- зидетерминированного канала с медленно меняющимися параметрами и аддитивным гауссовским шумом, являющуюся частным случаем модели ДСК, и дадим обоснование условий ее применимости для x)Соотношение (2.1) есть не то иное, как записанное в матричной форме линейное дифференциальное уравнение.

Описания проводных и некоторых других линий связи. Именно на эту модель мы будем ориентироваться при синтезе высокоскоростных модемов.




Поделитесь с Вашими друзьями:
1   2   3   4   5   6   7   8   9


База данных защищена авторским правом ©znate.ru 2019
обратиться к администрации

    Главная страница