Мангейм Дж



страница115/123
Дата31.12.2017
Размер6.16 Mb.
ТипКурс лекций
1   ...   111   112   113   114   115   116   117   118   ...   123
Использование пат-анализа. Можно проверить эмпирические предположения насчет верности выдвинутых в модели предположений путем подсчета серии регрессий, где каждая эндогенная переменная регрессировала со всеми переменными, которые предположительно на нее влияют. Чтобы пример был чисто гипотетический, возьмем пятипеременную рекурсивную модель, изображенную на модели 6 (остаточное влияние убрано для простоты изображения).

Чтобы проверить эту модель, мы определим регрессию X5 на X1 через X4, Х4 на X2 и X3 и X3 на X1. X1 и X3 будем считать экзогенными. Если значение любого из пат-коэффициентов (коэффициентов стандартизованной [c.457] регрессии), полученных при этих расчетах, приближается к 0 или является статистически незначимым, то это свидетельствует о том, что мы неверно построили модель, предположив в ней взаимосвязь, которой на самом деле в данных нет.

Кроме этого, можно проверить верность наших предположений относительно отсутствия взаимодействия путем вычисления регрессии между эндогенными переменными и теми, с которыми они, по нашему мнению, не связаны. Например, для проверки модели 6 нам нужно вычислить регрессию X3 на X1 и X4 на X1, чтобы выяснить, не следовало ли изобразить те стрелки, которые мы опустили. Если полученные пат-коэффициенты существенно отличны от 0 (>=0,2, например) и статистически значимы, нам придется заключить, что модель (и наша теория о тех явлениях, которые ею представлены) нуждается в пересмотре.

Одним из важнейших достоинств пат-анализа является то, что он облегчает разработку теории тем, что побуждает использовать теорию и анализ данных в плодотворном взаимодействии, где одно дополняет другое. Пат-анализ такого типа позволит судить не только о том, связаны ли переменные в нашей модели именно так, как мы предполагали, но и о том, каково относительное влияние каждой переменной на другие переменные в данной модели. Суммарное воздействие одной переменной на другую равно значению или силе прямой связи между ними плюс значение или сила непрямых связей, существующих между ними. Сила непрямой связи измеряется произведением тех прямых связей, из которых она состоит. Например, в модели 6 общее воздействие X2 на X5 равно



р52+(р42 р54),

а общее воздействие X1 на X5 будет равно (p21p52) + (p21р42p54).

Везде, где используются коэффициенты стандартизованной регрессии, можно использовать этот способ сравнения суммарных воздействий разных переменных в рамках одной системы. Знать его крайне полезно, поскольку он может помочь как рядовым гражданам, так и руководителям направить свои усилия именно туда, где [c.458] они будут иметь наибольший эффект. Например, если мы пытаемся убедить людей в необходимости пристегивать ремни, мы можем сначала выяснить, какой из нескольких факторов, определяющих это решение, имеет наибольшее влияние, и затем направить все усилия на изменение именно этой переменной.

Пат-анализ может быть также использован для сравнения воздействия переменных в разных системах. Если вернуться к примеру о школьной сегрегации, то можно собрать данные по Антланте, Лос-Анджелесу и Детройту и проверить верность модели 4 по каждому городу. Если мы не стандартизируем данные и используем коэффициенты нестандартизованной регрессии, то мы можем сравнить, скажем, влияние жилищной сегрегации на школьную сегрегацию в каждом из этих городов, чтобы понять, как интересующие нас причинные взаимодействия изменяются от города к городу. Необходимо использовать нестандартизованные коэффициенты, поскольку стандартизация ставит значение пат-коэффициента в зависимость от вариации переменной в данном массиве. Если, например, в одном городе школьная сегрегация проявляется гораздо сильнее, чем в другом, относительный размер коэффициента стандартизованной регрессии будет отражать степень этих различий в разбросе, а не действительную разницу в относительной силе проявления этой переменной в различных городах.

Общее правило – использовать стандартизованные коэффициенты при сравнении воздействий разных переменных в рамках одного массива и нестандартизованные коэффициенты при сравнении воздействий одних и тех же переменных в различных массивах9. Считается, что именно нестандартизованные коэффициенты позволяют судить о тех “причинных законах”, которые управляют общественным развитием. [c.459]


Каталог: files
files -> Истоки и причины отклоняющегося поведения
files -> №1. Введение в клиническую психологию
files -> Общая характеристика исследования
files -> Клиническая психология
files -> Валявский Андрей Как понять ребенка
files -> К вопросу о формировании специальных компетенций руководителей общеобразовательных учреждений в целях создания внутришкольных межэтнических коммуникаций
files -> Русские глазами французов и французы глазами русских. Стереотипы восприятия


Поделитесь с Вашими друзьями:
1   ...   111   112   113   114   115   116   117   118   ...   123


База данных защищена авторским правом ©znate.ru 2019
обратиться к администрации

    Главная страница