Мангейм Дж


ИЗМЕРЕНИЕ СВЯЗИ И ЗНАЧИМОСТИ ДЛЯ ПОРЯДКОВЫХ ПЕРЕМЕННЫХ



страница103/123
Дата31.12.2017
Размер6.16 Mb.
ТипКурс лекций
1   ...   99   100   101   102   103   104   105   106   ...   123
ИЗМЕРЕНИЕ СВЯЗИ И ЗНАЧИМОСТИ ДЛЯ ПОРЯДКОВЫХ ПЕРЕМЕННЫХ

Для порядковых переменных чаще всего используется коэффициент связи G, или гамма, работающий по тому же принципу ограничения ошибки, что и λ , но особо ценный тем, что он не просто определяет количество признаков в той или иной категории, а ранжирует их, т.е. выясняет их относительную позицию. Вопрос, решаемый с помощью G, состоит в том, какова степень, до которой ранжирование случаев одной порядковой переменной может быть определено при условии знания рангов случаев другой порядковой переменной.

Когда мы анализируем две подобные переменные, то возможны два случая зависимости. Первый, при котором случаи ранжируются в одном и том же порядке в обеих переменных (большие значения – с большими, меньшие – не меньшими), называется полное согласие. Второй, в котором случаи расположены в прямо противоположном порядке (большие значения одной переменной связаны с меньшими значениями другой и наоборот), называется полная инверсия. Тогда возможность предсказания (т.е.степень связи между двумя переменными) будет следствием того, насколько тесно ранги одной переменной связаны с рангами другой либо по типу “полное соответствие” (если G положительна и приближается к единице), либо но типу “полная инверсия” (если G отрицательна и приближается к –1). Значение коэффициента G, равное 0, [c.423] свидетельствует об отсутствии связи. Формула для исчисления G такова:

где fа = частота соответствий в ранжировании двух переменных;


fi = частота инверсий в ранжировании двух переменных.

G основана на относительном расположении набора случаев по двум переменным. Случаи сначала располагаются в восходящем порядке по независимой переменной. Затем это сравнивается с порядком расположения по зависимой переменной. Считается, что те переменные, для которых заданный порядок сохраняется, находятся в соответствии, а те, для которых этот порядок меняется на противоположный, связаны по типу инверсии. Недостаток места не позволяет нам рассмотреть эти процедуры детально или обсудить способы подсчета G для вариантов, когда количество признаков мало и/или между рангами не встречается одинаковых значений (параллелей). Лучше мы подробнее остановимся на процедурах, необходимых для подсчета G для более распространенных условий: когда есть параллели (более одного признака с одним и тем же рангом), а само количество признаков достаточно велико4.

Здесь, как и ранее, следует обратиться к таблице взаимной сопряженности признаков, такой, какой является табл. 15.5.

Таблица 15.5.


Каталог: files
files -> Истоки и причины отклоняющегося поведения
files -> №1. Введение в клиническую психологию
files -> Общая характеристика исследования
files -> Клиническая психология
files -> Валявский Андрей Как понять ребенка
files -> К вопросу о формировании специальных компетенций руководителей общеобразовательных учреждений в целях создания внутришкольных межэтнических коммуникаций
files -> Русские глазами французов и французы глазами русских. Стереотипы восприятия


Поделитесь с Вашими друзьями:
1   ...   99   100   101   102   103   104   105   106   ...   123


База данных защищена авторским правом ©znate.ru 2019
обратиться к администрации

    Главная страница