Мангейм Дж


Определение партийности на основании партийной принадлежности отца (1)



страница100/123
Дата31.12.2017
Размер6.16 Mb.
ТипКурс лекций
1   ...   96   97   98   99   100   101   102   103   ...   123
Определение партийности на основании партийной принадлежности отца (1)

Партийность отца

Партийность респондента

Демократ

Республиканец

Независимый

Всего

Демократ
Республиканец
Независимый
Всего

45
2
3
50

5
23
2
30

10
5
5
20

60
30
30
100

[c.418]

По этой таблице мы можем партийные предпочтения родителей использовать для определения партийных предпочтений респондентов. Для этого мы, как и раньше, определим моду, но только внутри каждой категории независимой переменной, а не по всему набору признаков. Таким образом, получится, что для тех респондентов, чьи отцы зафиксированы как демократы, мы прослеживаем предпочтение той же партии. Мы будем правы 45 раз и не правы 15 (для 5 республиканцев и 10 независимых). Для тех, чьи отцы зафиксированы республиканцами, мы предполагаем принадлежность к республиканской партии, при этом в 23 случаях мы окажемся правы и в 7 – не правы. Тех, чьи отцы зафиксированы независимыми, отнесем к независимым и будем правы в 5 из 10 случаев. Сравнив эти результаты, увидим, что теперь мы в состоянии верно предположить 73 раза и все еще ошибаемся 27 раз. Иными словами, наличие второй переменной существенно улучшило наши шансы. Для того чтобы точно определить процентную долю этого улучшения, используем общую формулу коэффициента связи.





В приведенном примере это выглядит так:



Используя партийную принадлежность отца в качестве определителя партийной принадлежности респондента, мы можем улучшить (ограничить количество ошибок) наши предположения примерно на 46%.

Формула подсчета λ, которая приведет нас к тем же результатам, хотя и несколько другим путем, такова:

,

[c.419]

где fi – максимальная частота внутри каждой категории или градации независимой переменной;


Fd – максимальная частота в итоговых распределениях зависимой переменной;

N – количество признаков.

Лямбда изменяется в пределах от 0 до 1, где высшие (близкие к 1) значения обозначают сильную связь. Поскольку номинальные переменные не имеют направления, λ всегда будет положительной.

Следующий наш шаг – определить, чем вызваны взаимосвязи, выраженные λ, – истинными параметрами совокупности или просто случаем, т.е. мы должны определить, являются ли эти взаимосвязи статистически значимыми.

Для номинальных переменных тест на статистическую значимость проводится путем подсчета критерия χ2 (хи-квадрат). Этот коэффициент говорит нам о том, насколько вероятно, что номинальный тип связей, который мы только что наблюдали, является результатом случая. Это делается путем сравнения тех результатов, которые мы реально имеем, с теми, которые ожидаются тогда, когда между переменными нет никакой связи. Подсчет χ2 также начинается с таблицы взаимной сопряженности признаков, хотя и несколько отличающейся от табл. 15.1. Рассмотрим табл. 15.2.



Таблица 15.2.


Каталог: files
files -> Истоки и причины отклоняющегося поведения
files -> №1. Введение в клиническую психологию
files -> Общая характеристика исследования
files -> Клиническая психология
files -> Валявский Андрей Как понять ребенка
files -> К вопросу о формировании специальных компетенций руководителей общеобразовательных учреждений в целях создания внутришкольных межэтнических коммуникаций
files -> Русские глазами французов и французы глазами русских. Стереотипы восприятия


Поделитесь с Вашими друзьями:
1   ...   96   97   98   99   100   101   102   103   ...   123


База данных защищена авторским правом ©znate.ru 2019
обратиться к администрации

    Главная страница