Хрестоматия по психологии


МАТЕМАТИЧЕСКИЕ СПОСОБНОСТИ И ЛИЧНОСТЬ



страница72/99
Дата10.05.2018
Размер2.54 Mb.
1   ...   68   69   70   71   72   73   74   75   ...   99
МАТЕМАТИЧЕСКИЕ СПОСОБНОСТИ И ЛИЧНОСТЬ

Прежде всего следует отметить характеризующее способных математиков и совершенно необходимое для успешной деятель­ности в области математики «единство склонностей и способно­стей в призвании», выражающееся в избирательно-положитель­ном отношении к математике, наличии глубоких и действенных интересов в соответствующей области, стремлении и потребности заниматься ею, страстной увлеченности делом. Нельзя стать твор­ческим работником в области математики, не переживая увлечен­ности этой работой, — она порождает стремление к поискам, мо­билизует трудоспособность, активность. Без склонности к матема­тике не может быть подлинных способностей к ней. Если ученик не чувствует никакой склонности к математике, то даже хорошие способности вряд ли обеспечат вполне успешное овладение мате­матикой. Роль, которую здесь играют склонность, интерес, сво­дится к тому, что интересующийся математикой человек усиленно занимается ею, а следовательно, энергично упражняет и развива­ет свои способности. На это указывают постоянно сами матема­тики, об этом свидетельствуют вся их жизнь и творчество...

Составленные нами характеристики одаренных учащихся ярко свидетельствуют о том, что способности действенно развивают­ся только при наличии склонностей или даже своеобразной потреб­ности в математической деятельности (в относительно элемен­тарных ее формах). Все без исключения наблюдаемые нами дети обладали обостренным интересом к математике, склонностью за­ниматься ею, ненасытным стремлением к приобретению знаний по математике, решению задач.

Но если способности, как правило, связаны со склонностью, то это не носит все-таки характера всеобщего закона. Ошибочно было бы, скажем, диагностировать наличие или отсутствие Спо­собностей по тому, имеется ли и как ярко выражена склонность к соответствующему виду деятельности. В отдельных случаях здесь может быть и расхождение...

В школе нередко встречаются такие случаи: способный к ма­тематике ученик мало интересуется ею и не проявляет особых успехоз в овладении этим предметом. Но если учитель сумеет пробудить у него интерес к математике и склонность заниматься ею, то такой ученик, «захваченный» математикой, может быстро добиться больших успехов. Подобные случаи имели место и в жизни известных ученых-математиков (Н. И. Лобачевский, М. В. Остроградский, Н. Н. Лузин и другие).

...Переживаемые человеком эмоции являются важным факто­ром развития способностей к любой деятельности, не исключая и математической. Радость творчества, чувство удовлетворения от напряженной умственной работы, эмоциональное наслаждение этим процессом повышают умственный тонус человека, мобили-

293

зук>т его силы,: заставляют преодолевать трудности. Равнодуш­ный человек ие может быть творцом. Все изученные нами одарен­ные дети отличались глубоким эмоциональным отношением к; ма­тематической деятельности, переживали настоящую радость, выз­ванную каждым новым достижением. ,<...>



Большое значение в математическом творчестве имеют свое­образные эстетические чувства. Известный математик А. Пуанка­ре писал о подлинно эстетическом чувстве, которое переживают математики, — чувстве математической красоты, гармонии чисел и форм, о чувстве геометрического изящества. «Математик тво­рит, потому что красота мыслительных построений приносит ему радость», — писал Г. Ревеш. Это переживание изящества решения было очень характерным для наблюдаемых нами способных уча­щихся. «Красивое решение!», «Вот этот прием, как хорошая шах­матная комбинация, вызывает у меня чувство удовольствия»,— говорили школьники. И весь нх облик свидетельствовал о пере­живаемом ими эстетическом чувстве — их глаза радостно блесте­ли, они довольно потирали руки, смеялись, приглашали друг дру­га полюбоваться остроумным ходом мыслн, особенно «изящным» решением.

Возможность полного и интенсивного развития математических способностей, как и способностей вообще, всецело зависит от уровня развития характерологических черт, особенно волевых черт характера. <...;>

Как бы нн были блестящи способности человека, но если у не­го нет привычки усидчиво и упорно работать, он вряд ли способен достигнуть больших успехов в деятельности. Он в лучшем слу­чае так н останется лишь потенциально способным... Упорство, настойчивость, работоспособность, трудолюбие постоянно прояв­лялись в математической деятельности наблюдаемых нами ода­ренных учащихся... Впрочем, бывают и исключения. Некоторые школьники, обладающие математическими способностями, оши­бочно считают, что в области математики им не надо особенно трудиться, так как способности нх «вывезут». Учителя и родители должны постоянно убеждать их в том, что овладение математи­кой даже при наличии способностей требует трудолюбия, настой­чивости, усидчивости, должны терпеливо воспитывать этн каче­ства, побуждать школьников не отступать перед трудностями прн решении математических задач, доводить дело до кон­ца. <...>

Разумеется, все сказанное выше о характерологических чер­тах ученого-математика надо понимать в том смысле, что указан­ные черты могут проявляться избирательно, только в математи­ческой деятельности, не характеризуя других сторон его жизнн и деятельности. Совершенно правильно указывают А. Г. Ковалев и В. Н. Мясищев, что ученый, в том числе н математик, может иметь слабую волю, плохую работоспособность, бысгро утом­ляться, но в математической деятельности он же может проявлять

294

совсем другие черты: высокую организованность, настойчивость, работоспособность.



Еще одна черта Характера свойственна подлинному ученому — критическое Отношение к себе, своим возможностям, своим дости­жениям, скромность, правильное отношение к своим способно­стям. Надо иметь в виду, что при неправильном отношении к способному школьнику —захваливании его, чрезмерном преуве­личении его достижений, афишировании его способностей, под­черкивании его превосходства над другими — очень легко вну­шить ему веру в свою избранность, исключительность, заразить его «стойким вирусом зазнайства». <...>

И наконец, последнее. Математическое развитие человека не­возможно без повышения уровня его общей культуры. Нужно всегда стремиться к всестороннему, гармоничному развитию лич­ности. Своеобразный «нигилизм» ко всему, кроме математики, резко одностороннее, «однобокое» развитие способностей не могут способствовать успешности в математической деятельности.

Анализируя схему структуры математической одаренности, мы можем заметить, что определенные моменты в характеристике перцептивной, интеллектуальной и мнемической сторон матема­тической деятельности имеют общее значение... Поэтому развер­нутую схему структуры можно представить и в иной, чрезвычай­но сжатой формуле: математическая одаренность характеризует­ся обобщенным, свернутым и гибким мышлением в сфере матема­тических отношений, числовой и знаковой символики н матема­тическим складом ума. Эта особенность математического мышле­ния приводит к увеличению скорости переработки математиче­ской информации (что связано с заменой большого объема ин­формации малым объемом — за счет обобщения и свертывания) и, следовательно, экономии нервио-психических сил... Указанные способности в разной степени выражены у способных, средних н неспособных учеников. У способных при некоторых условиях такие ассоциации образуются «с места», при минимальном ко­личестве упражнений. У неспособных же они образуются с чрез­вычайным трудом. Для средних же учащихся необходимым ус­ловием постепенного образования таких ассоциаций является си­стеме специально организованных упражнений, тренировка <...>

СПЕЦИФИЧНОСТЬ МАТЕМАТИЧЕСКИХ СПОСОБНОСТЕЙ

Возникает вопрос: в какой степени выделенные нами компо­ненты являются специфически математическими способностя­ми? •<...!>

Рассмотрим с этой точки зрения одну из основных способнос­тей, выделенных нами в структуре математической одареннос­ти,— способность к обобщению математических объектов, отно­шений и действий. Разумеется, способность к обобщению — по прнрвде своей общая способность и обычно характеризует общее свойство обучаемости. <...>

295


Ир речь-то йдеТ'в данном случае не о способности к обобще­нию, а о способности к обобщению количественных и простран­ственных отношений, выраженных в числовой и знаковой сим-волйке.

fyeto можно аргументировать нашу точку зрения, заключаю­щуюся в том, что способность к обобщению математического ма­териала есть специфическая способность?

Во-первых, тем, что эта способность проявляется в специфи­ческой сфере и может не коррелировать с проивлением соответ­ствующей способности в других областях... Иными словами, чело­век; талантливый вообще, может быть бездарным в математике. Д. И. Менделеев в школе отличался большими успехами в об­ласти математики и физики и получал нули н единицы по языко­вым предметам. А. С. Пушкин, судя по биографическим данным, учась в лицее, пролил много слез над математикой, приложил много трудов, но «успехов приметных не оказал».

Правда, есть немало случаев и сочетания математической и, например, литературной одаренности. Математик С. Ковалевская была талантливой писательницей, ее литературные произведения оценивались весьма высоко. Известный математик XIX в. В. Я. Буняковский был поэтом. Английский профессор матема­тики Ч. Л. Доджсон (XIX в.) был талантливым детским писате­лем, написал под псевдонимом Льюиса Кэррола известную книгу «Алиса в стране чудес». С другой стороны, поэт В. Г. Бенедиктов написал популярную книгу по арифметике. А. С. Грибоедов ус­пешно учился на математическом факультете университета. Изве­стный драматург А. В. Сухово-Кобылин получил математическое образование в Московском университете, проявлял большие спо­собности к математике и за работу «Теория цепной линии» по­лучил золотую медаль. Серьезно интересовался математикой Н. В. Гоголь. М. Ю. Лермонтов очень любил решать математиче­ские задачи. Серьезно занимался методикой преподавания ариф­метики Л. Н. Толстой.

Цо-вторых, можно указать на целый ряд зарубежных иссле­дований, которые показали /(правда, основываясь только на тестовой методике и корреляционном и факторном анализе) сла­бую/ корреляцию между показателем интеллекта (известно, что способность к обобщению — одна из важнейших характеристик общего интеллекта) и тестами на достижения в математи­ке. <...>

В-третьих, для обоснования нашей точки зрения можно со­слаться на учебные показатели (оценки) детей в школе. Многие учителя указывают, что способность к быстрому и глубокому об­общению может проявляться в каком-нибудь одном предмете, не характеризуя учебной деятельности школьника по другим пред­метам. Некоторые из наших испытуемых, проявляющих, напри­мер, способность к обобщению «с места» в области математики, не обладали этой способностью в области литературы, исторнн или географии. Имели место и обратные случаи: учащиеся, хоро-

296

шо. н быстро обобщающие и систематизирующие материал но литературе, исторнд или биологии, не проявляли подобной спо­собности, в области математики. <...]>



Все сказанное выше позволяет нам сформулировать положе­ние о специфичности математических способностей в следующем виде.,-Те или иные особенности, умственной деятельности школь­ника могут характеризовать только его математическую деятель­ность, проявляться только в сфере пространственных и количест­венных отношений, выраженных средствами числовой и знаковой символики, и не характеризовать других видов его деятельности, не коррелировать с соответствующими проявлениями в других областях. Таким образом, общие по своей природе умственные способности (например, способность к обобщению) могут в ряд* случаев выступать как специфические способности (способность к обобщению математических объектов, отношений и дейст­вий). <...>

Мир математики — мир количественных и пространственных отношений, выраженных посредством числовой и знаковой сим* волики, очень специфичен и своеобразен. Математик имеет дело с условными символическими обозначениями пространственных и количественных отношений, мыслит ими, комбинирует, оперирует ими. И в этом очень своеобразном мире, в процессе весьма специ­фической деятельности общая способность так преобразуется, так трансформируется, что, оставаясь общей по своей природе, выступает уже как специфическая способность.

Разумеется, наличие специфических проявлений общей... спо­собности никак не исключает возможности других проявлений этой же общей способности (как наличие у человека способно-стей к математике не исключает наличия у него же способностей и в других областях).

НЕКОТОРЫЕ СООБРАЖЕНИЯ О ПРИРОДЕ МАТЕМАТИЧЕСКИХ СПОСОБНОСТЕЙ

Материалы нашего исследования — анализ многочисленной ли­тературы, анализ случаев чрезвычайно высокой математической одаренности в детском и зрелом возрасте (последнее — по биогра­фическим материалам) —позволяют выделить некоторые факты, представляющие особый интерес для постановки вопроса о приро­де математической одаренности. Эти факты таковы: 1) часто* (хотя и не обязательное) весьма раннее формирование способ­ностей к математике, нередко в неблагоприятных условиях (на­пример, при явном противодействии родителей, опасающихся столь раннего яркого проявления способностей) и при отсутствии на первых порах систематического и целенаправленного обуче­ния; 2) острый интерес и склонность к занятиям математикой, также часто проявляющиеся в раннем возрасте; 3) большая (а часто избирательная) работоспособность в области математики, связанная с относительно малой утомляемостью в процессе на-

297

пряженных занятий математикой, и 4) характеризующая очень



способных к математике людей математическая^ направленность

£ума* как своеобразная тенденция воспринимать многие явления

[■."через призму математических отношений» осознавать их в плане

Г математических категорий.

■ Все это позволяет выдвинуть гипотезу о роли прирожденных -•функциональных особенностей мозга в случаях особой (подчер­киваем это!) математической одаренности — мозг некоторых лю­дей своеобразно ориентирован (настроен) на выделение из окру­жающего мира раздражителей типа пространственных и число­вых отношений и символов и на оптимальную работу именно с такого рода раздражителями. В ответ на раздражители, имею­щие математическую характеристику, связи образуются относи­тельно быстро, легко, с меньшими усилиями и меньшей затратой снл. Аналогично неспособность к математике (имеются в виду также крайние случаи) имеет своей первопричиной большую за­трудненность выделения мозгом раздражителей типа математи­ческих обобщенных отношений, функциональных зависимостей, числовых абстрактов и символов и затрудненность операций с ни­ми. Иными словами, некоторые люди обладают такими прирож­денными характеристиками строения и функциональных особен­ностей мозга, которые крайне благоприятствуют (или, наоборот, весьма не благоприятствуют) развитию математических способ­ностей.

И на сакраментальный вопрос; «Математиком можно стать или им нужно родиться?» — мы гипотетически ответили бы так: «Обычным математиком можно стать; выдающимся, талантливым математиком нужно и родиться». Впрочем, здесь мы не ориги­нальны,— многие выдающиеся ученые утверждают это же. Мы уже приводили слова академика А. Н. Колмогорова: «Талант, одаренность... в области математики... даны от природы не всем». О том же говорит и академик И. Е. Тамм: «Творить новое... под силу только специально одаренным людям» (речь идет о науч­ном творчестве высокого уровня. — В. К.). ;;i Все это сказано пока лишь в порядке гипотезы. <....> *\ Выяснение физиологической природы математических способ­ностей является важной задачей дальнейших исследований в этой области. Современный уровень развития психологии и физиоло­гии вполне позволяет поставить вопрос о физиологической при­роде и физиологических механизмах некоторых специфических способностей человека.

Крутецкий В. А. Психология мате­матических способностей школьников. М., 1968, с. 380—390, 397—400.

298



Каталог: users files -> books
books -> Символы и числа «Книги перемен»
books -> Книга тота великие арканы таро абсолютные Начала Синтетической Философии Эзотеризма
books -> Суд над сократом
books -> А. С. Тимощук традиция: сущность и существование
books -> Стивен Розен Реинкарнация в мировых религиях Москва «Философская Книга» 2002 Перевод
books -> Хайдеггер и восточная философия: поиски взаимодополнительности культур
books -> Квантово-мистическая картина мира
books -> Джордж Озава – Макробиотика дзен
books -> 3 По этому вопросу см статью «История» в Historisches Worterbuch tier Philosophic. Darmstadt, 1971. Т. Hi. С
books -> Золотая философия. Эммануил сведенборг. "О божественной любви и божественной мудрости."


Поделитесь с Вашими друзьями:
1   ...   68   69   70   71   72   73   74   75   ...   99


База данных защищена авторским правом ©znate.ru 2019
обратиться к администрации

    Главная страница