Г. И. Рузавин логика и аргументация


Обобщение и ограничение понятий



страница8/54
Дата10.05.2018
Размер3.9 Mb.
1   ...   4   5   6   7   8   9   10   11   ...   54
Обобщение и ограничение понятий

Под обобщением понятий подразумевается операция перехода от понятий меньшего объема к понятиям большего объема, а под ограничением обратный процесс перехода от понятий большего объема к понятиям меньшего объема. Однако в отличие от предыдущего случая отношений понятий с фиксированными объемами, при обобщении и ограничении понятий происходит также изменение содержания понятий, поскольку при обобщении некоторые признаки исключаются, а при ограничении, наоборот, прибавляются. Это непосредственно следует из закона обратного отношения между объемом и содержанием понятия.

Обобщение понятий неразрывно связано с процессом абстрагирования, в результате чего отвлекаются от тех признаков, которые в ходе познания оказываются несущественными, и потому опускаются. Процесс ограничения связан с противоположным движением мысли, который называется конкретизацией, или точнее спецификацией. Только благодаря конкретизации общие понятия можно применять для исследования частных случаев.

Наиболее ясно обобщение и ограничение понятий прослеживается в математике, причем в чистой, (теоретической) математике преобладает процесс обобщения понятий, а в приложениях математики – их конкретизация.

Хотя с логической точки зрения такие обобщения понятий представляются вполне ясными и даже очевидными, но исторически новые понятия и основанные на них теории находили признание не сразу, не без борьбы мнений и конфликтов. Достаточно лишь отметить, например, с какими трудностями ученые столкнулись при обобщении понятия числа и введении понятий иррациональных и мнимых чисел, а в недалеком прошлом – понятий о неевклидовых пространствах и бесконечных множествах. В неменьшей степени конфликты сопровождали обобщения и введение новых понятий в астрономии мира, например, гелиоцентрической системы мира (вместо геоцентрической птолемеевой системы мира), в физике, биологии и других науках.

2.2. Определение понятий. Их основные виды


Существуют самые разнообразные способы определения понятий, которые ориентированы на потребности исследования разных наук, но все они ставят своей целью:

1) четко отделить класс предметов определенного типа от других;

2) выявить их специфическое содержание, т.е. совокупность существенных признаков, которые присущи их элементам.

Достижение второй цели представляет наибольшие трудности, поскольку раскрытие существенных признаков предметов – процесс длительный, исторический. Сущность не лежит на поверхности наблюдаемых явлений, она постигается в результате глубокого и всестороннего их познания. При этом за сущностью первого уровня скрывается сущность второго уровня и так до бесконечности.

Кроме того, при определении понятий приходится иметь дело с существенными признаками разного рода, например, для геометрии существенными являются пространственные формы мира, для химии – состав исследуемых веществ и их превращения в результате химических реакций, для экономики – производственные отношения людей. Поскольку в различных областях познания и практической деятельности преследуются разные цели, целесообразно применять разные способы определения понятий.

С помощью определения мы ограничиваем класс рассматриваемых объектов и, следовательно, указываем границы применения вводимого понятия, а тем самым и раскрываем специфику понятия как особой формы мышления. Область применения понятия устанавливается с помощью объема понятия, который в свою очередь зависит от содержания, т.е. от совокупности его существенных признаков. Таким образом, в определении содержание и объем понятия выступают в неразрывном единстве.

В каких случаях возникает необходимость в определении понятий?

1. Уточнение и определение понятий необходимо в любом процессе доказательства и аргументации вообще. Математическое доказательство, как известно, опирается не только на аксиомы, но и на первоначальные, исходные понятия, которые считаются известными и принимаются без определения. Все другие понятия должны быть определены с помощью исходных понятий. Необходимо иметь в виду, что даже в самой строгой и точной науке все определить невозможно, ибо в противном случае одно понятие будет определяться через другое, а оно в свою очередь через третье и так до бесконечности. Чтобы исключить такой регресс в бесконечность, следует прервать процесс определения в каком-то месте и принять некоторые понятия как исходные, не требующие определений. Обычно такие понятия хотя и не определяются, но поясняются: например, понятия числа в арифметике, прямой, точки и плоскости – в геометрии, полезности – в экономике, справедливости – в социологии и т.д. В процессе аргументации, когда мы стремимся убедить кого-то в чем-то, также приходится постоянно уточнять понятия, поскольку именно расхождения в содержании или смысле терминов и слов, а особенно замена понятий метафорами и сравнениями, вызывает многочисленные споры.

2. Определения становятся совершенно необходимыми тогда, когда в качестве научных терминов используются слова или словосочетания естественного, разговорного языка. Такие широко употребляемые в физике, химии и других науках понятия, как "сила", "работа", "энергия" и другие, заимствованные из повседневного языка, в науке обозначают нечто другое, чем в обыденной речи. Так, "сила" определяется как произведение массы на ускорение, а "работа" – как произведение силы на путь. Подобный же процесс уточнения понятий происходит в социально-экономических и гуманитарных науках.

3. Даже в тех случаях, когда понятие считается более или менее ясным, могут возникнуть расхождения в процессе его применения. Многие споры по общественно-политическим и социальным вопросам зачастую связаны с тем, что их участники по-разному понимают одни и те же термины и имена. Так, например, многие путают понятия суверенитета и независимости, плюрализма и демократии, и нередко их отождествляют в своих политических целях. Скажем, плюрализм мнений есть необходимая предпосылка демократии, но последняя не сводится к равноправности всех мнений, поскольку некоторые из них могут оказаться явно ошибочными. Только обоснованные мнения и предложения считаются приемлемыми.

С помощью определений как раз и стремятся выделить изучаемый объект посредством явного указания его отличительных или существенных свойств, способов его построения, генезиса (происхождения) или употребления. В ряде случаев определение служит для введения или уточнения значения знакового выражения. Такого рода определения называют номинальными и отличают от определений реальных. Как показывает само их название, реальные определения выделяют предметы, находящиеся вне рамок нашего познания. Так, когда говорят, что "термометр есть прибор для измерения температуры", то тем самым выделяют класс этих приборов среди других - измерительных устройств (манометров, барометров, гигрометров и т.п.). Когда же определяют понятие температуры, то прибегают непосредственно не к реальности, а к понятиям термодинамики. Поэтому различие между рассматриваемыми понятиями зависит прежде всего от того, идет ли речь о реальности объективной или же реальности, отраженной в нашем сознании, т.е. субъективной. Термин "номинальное определение" указывает, что оно относится к названию или имени понятия, а не к вещи, названной этим именем. Не следует, однако, забывать, об относительности и условности различия между реальными и номинальными определениями. Ведь понятия, которые мы относим к номинальным, также в конечном счете отражают действительность, хотя и опосредованным путем. Тем не менее номинальные определения часто рассматриваются именно в рамках теоретического знания и служат, с одной стороны, для введения новых терминов и имен на основе уже известных, а с другой – для сокращения информации. Обычно они предваряются словом "называется": "Ромбом называется равносторонний параллелограмм, квадратом – равноугольный ромб".

В структуре определения (дефиниции) мы различаем, с одной стороны, понятие, которое должно быть определено, – дефиниендум (от лат. definiendum), a с другой – понятие, посредством которого что-то определяется – дефиниенс (от лат. definiens). Обычно в качестве дефиниендума берется термин или имя, которое вводится в науку или речь, а дефиниенс определяет и разъясняет его с помощью уже известных терминов или имен. Так, определяя ромб как равносторонний параллелограмм, мы уже располагаем понятием параллелограмма.

Схематически структуру определения можно представить так:
Dfd = Dfns,
где Dfd обозначает сокращение от слова defmiendum;

Dfns – сокращение от слова definiens;

знак = показывает эквивалентность (равнозначность) понятий по определению.

Такую четкую структуру обычно имеют явные определения, когда определяемое понятие в известном отношении эквивалентно определяющему. Поэтому мы можем заменять один термин другим в разных текстах. Смысл такого определения непосредственно, явно разъясняется с помощью другого понятия.

Неявные определения связаны с контекстом речи или научного языка, поэтому значительную часть таких определений составляют контекстуальные определения.

Очень часто содержание понятия, а тем более смысл термина, имени или слова мы постигаем не с помощью точного разъяснения (экспликации) либо путем обращения к справочникам, энциклопедиям или толковым словарям, а на основе соответствующего контекста речи в которых они встречаются. Такой контекстуальный подход к пониманию оказывается необходимым в тех случаях, когда мы стараемся понять незнакомые термины и имена в текстах, отдаленных от нас по времени, например, в исторических хрониках, античной литературе, библейских текстах, а также при переводах с иностранного языка на родной язык. Нередко при переводах мы не спешим обратиться к словарю, а стараемся понять смысл термина или слова в том контексте, где они встречаются. Для этого мы рассматриваем их отношение к другим именам или словам. Аналогичный прием широко используется для интерпретации и понимания текстов исторического, религиозного, художественного содержания в герменевтике, изучающей приемы и методы понимания разнообразных текстов.

Особое значение контекстуальный подход к определению содержания понятий, смысла терминов и слов приобретает при работе с юридическими документами. В зависимости от смысла, который придается термину, часто возникают разночтения правовых документов, что приводит не только к спорам, но и к нарушениям законов при их применении. Типичными в этом отношении являются противоречия, возникающие между законными и подзаконными постановлениями, например между нормами конституции и постановлениями правительства и других органов исполнительной власти.

Контекстуальные определения могут иметь разную степень точности, ясности и однозначности. В качестве простейших видов таких определений можно рассматривать остенсивные (от лат. ostendere – показывать) определения, которые основываются на определении значения слов путем непосредственного показа тех предметов, к которым они относятся. Именно таким путем ребенок усваивает значения таких слов, как "дерево", "кошка", "собака" и им подобных, тем самым постепенно овладевая языком.

Поскольку остенсивные определения непосредственно связывают слово с вещью, они имеют фундаментальный характер в процессе развития сознания и речи. Однако многие логики не относят их к полноценным определениям в силу того, что они не выделяют одни объекты среди других, а тем более не указывают их существенные свойства. В связи с этим логики эти определения называют протоопределениями (от греч. protos – первый, исходный).

На другом полюсе контекстуальных определений находятся аксиоматические определения, которые широко используются в математике и точных науках, а теперь начинают применяться также в экономических и социологических теориях. В качестве примера рассмотрим определения точки, прямой и плоскости в геометрии Евклида. На первоначальном этапе обучения в школе их смысл обычно разъясняют с помощью тех или иных наглядных образов, т.е. прибегают к остенсивным определениям. Например, точкой называют крохотное пятнышко чернил или графита, а иногда прибегают к более сложному образу, рассматривая точку как место пересечения световых лучей. Ясно, что такие образы нельзя считать даже нестрогими определениями. Поэтому в геометрии ее основные понятия определяют с помощью аксиом, в которых точно и ясно перечисляются все те свойства и отношения, которые присущи точкам, прямым и плоскостям. Обратите внимание, что в аксиоматическом определении речь идет не об отдельном определении точки, прямой и плоскости, а всех этих понятий одновременно, ибо только взятые вместе они обладают теми свойствами, которые перечислены в аксиомах.

Подобным же образом в аксиоматической теории полезности, чтобы придать точный смысл этому понятию, все его свойства, необходимые для экономического анализа, формулируются в аксиомах. Тогда все дальнейшие выводы теории можно получить чисто логически, т.е. как необходимые следствия из принятой системы аксиом. При этом может случиться, что следствия не подтверждаются в действительности, тогда подвергают пересмотру, уточнению и исправлению сами аксиомы. Такой способ применения аксиоматического метода типичен для всех наук, которые опираются на факты, наблюдения и эксперименты.


Каталог: sites -> default -> files
files -> Валявский Андрей Как понять ребенка
files -> Народная художественная культура. Профиль Теория и история народной художественной культуры
files -> Отчет о научно-исследовательской работе за 2014 год ростов-на-Дону 2014
files -> Учебно-методический комплекс дисциплины философия для образовательной программы по направлениям юридического факультета: Курс 1
files -> Цветков Андрей Владимирович, кандидат психологических наук, доцент кафедры клинической психологии программа
files -> Программа итогового (государственного) комплексного междисциплинарного экзамена по направлению 521000 (030300. 62) «Психология»


Поделитесь с Вашими друзьями:
1   ...   4   5   6   7   8   9   10   11   ...   54


База данных защищена авторским правом ©znate.ru 2019
обратиться к администрации

    Главная страница