Г. И. Рузавин логика и аргументация


Разделительно-категорическое



страница45/54
Дата10.05.2018
Размер3.9 Mb.
1   ...   41   42   43   44   45   46   47   48   ...   54
Разделительно-категорическое доказательство основывается на разделительно-категорической демонстрации аргументов, о которой шла речь выше. Там мы убедились, что если исключаются все гипотезы или предположения, кроме одного-единственного, то тем самым косвенно доказывается истинность этого оставшегося предположения. Но зачастую это не освобождает нас от прямого, непосредственного доказательства, когда речь идет, например, о доказательстве виновности подсудимого.

7.5. Опровержение


В широком смысле слова под опровержением подразумевается процесс рассуждения, с помощью которого обосновывается либо ложность выдвигаемого тезиса, либо отдельных посылок, либо умозаключения в целом. В этом отношении опровержение отличается от доказательства, которое считается несостоятельным, когда по крайней мере одна из его посылок является ложной либо посылки считаются сомнительными, не говоря уже о необходимой логической связи между посылками и тезисом доказательства.
Тезис опровержения может оказаться истинным даже тогда, когда все посылки являются ложными, а связь между посылками не отвечает требованиям правил логики. Иными словами, тезис в этом случае не находится в необходимой логической связи с аргументами, которые приводятся для его обоснования.
Итак, следует различать три основных способа опровержения.

1. Первый способ относится к опровержению аргументов, служащих основой рассуждения. Факты, на которые опирается аргументация, заслуживают особо тщательного обоснования, ибо именно на них опираются все наши обобщения, эмпирические и теоретические законы. Обнаружение новых фактов, полученных в результате тщательных и систематических наблюдений, специально проведенных экспериментов и практической деятельности, приводит к опровержению целого ряда предложений, гипотез, концепций и общепринятых мнений.

Обычно аргументы, опирающиеся на законы науки, оказываются наиболее надежными средствами аргументации, но и они с течением времени подвергаются уточнению, обобщению и исправлению. С такой широкой точки зрения прогресс науки всегда сопровождается опровержением целого ряда ранее принятых ее положений, хотя при этом всегда сохраняется преемственность между новым и старым знанием. Однако логика не рассматривает процесс опровержения в таком широком контексте.

2. Второй способ опровержения связан с анализом необходимой логической связи между аргументами и тезисом, которые служат соответственно посылками и заключением дедуктивного вывода. Если такая связь отсутствует, то тем самым опровергается истинность заключения, т.е. демонстрируется, что тезис логически не вытекает из посылок.

3. Третий способ относится к опровержению самого тезиса. В принципе такое опровержение может быть применено к любому утверждению.

Для этого в науке используются различные приемы рассуждений, основанные на выведении логических следствий из опровергаемого утверждения. Наиболее часто используется, например, прием, получивший название "приведения к нелепости" (reductio ad absurdum). В отличие от косвенного доказательства от противного, в данном случае опровергаемое утверждение принимается в качестве истинного, и тем самым исключается окольный путь доказательства. Из него выводятся логические следствия, некоторые из них оказываются явно противоречащими хорошо известным истинам, так что они рассматриваются как нелепые или абсурдные. На этом основании доказательство такого рода получило название приема сведения к абсурду. Поскольку следствие оказывается ложным, то по отрицательному модусу условного умозаключения опровергается исходное утверждение (или тезис). Необходимо, однако, подчеркнуть, что рассмотренный прием опровержения нельзя применить к совершенно новым положениям науки, следствия из которых кажутся абсурдными с точки зрения так называемого "здравого смысла" или ходячих мнений и представлений, какими казались первоначально, например, теоремы неевклидовой геометрии, которую сам Лобачевский из осторожности называл воображаемой. Действительно, даже математики того времени не могли допустить, что параллельные линии могут сходиться и пересекаться, а сумма углов треугольника зависит от величины его сторон. В значительной мере подобные возражения связаны с отождествлением абстрактной геометрии с эмпирической, чисто логических рассуждений – с практическими. Не меньшие возражения вызывает теория бесконечных множеств Г. Кантора, в которой бесконечное множество уподобляется конечному, вследствие чего часть множества (или подмножество) оказывается эквивалентной целому множеству. Так, множество натуральных чисел считается эквивалентным (или равномощным) множеству всех рациональных чисел, а множество четных чисел – всему множеству натуральных чисел. С точки зрения "здравого смысла" и традиционных представлений эти результаты кажутся абсурдными. Поэтому необходимо помнить, что доказательства путем приведения к абсурду не имеют ничего общего с радикально новыми открытиями науки. Когда речь идет о приведении к абсурду или нелепости, то имеются в виду противоречия с истинами, законами, аксиомами и принципами, которые являются общепризнанными в определенный период времени и имеющими общенаучный характер.


7.6. Правила доказательства и опровержения


В процессе доказательства и опровержения используются, как мы видели, самые разные способы умозаключения. Поэтому, очевидно, что для доказательства или опровержения того или иного тезиса необходимо соблюдать те логические правила, которые относятся к соответствующим способам умозаключений. Но кроме этих специфических правил существуют общие правила доказательств и опровержений, в которых формулируются требования к их составным частям – к тезису, аргументам и способам построения самих доказательств.
1. Правила, относящиеся к тезису, заключаются в том, чтобы на протяжении всего рассуждения, ведущего к доказательству, тезис оставался тем же самым. Кратко это требование можно сформулировать как правило тождества тезиса. Необходимо также стремиться к тому, чтобы тезис был сформулирован ясно и точно, ибо в противном случае невозможно убедиться в том, является ли он тем же самым.

При нарушении правила о тождестве тезиса возникает ошибка, которая называется подменой тезиса. Такие ошибки чаще всего встречаются в ходе спора или полемики. Наиболее распространенными ошибками подобного рода является подмена спора из-за тезиса спором из-за его доказательства. Так, например, на суде адвокат может убедительно доказать, что доводы обвинения не являются обоснованными и поэтому его подзащитный не может считаться виновным. Некоторые люди из этого обычно заключают, что раз виновность не доказана, то подсудимый вообще невиновен. В точном и строгом смысле слова в данном случае следует говорить лишь о несостоятельности доказательства обвинения, но не о доказательстве невиновности подсудимого. Нередко подмена тезиса происходит путем раскрытия противоречий в рассуждениях оппонента, между его словами и делами, взглядами и поведением. С логической точки зрения, нетрудно понять, что во всех этих случаях происходит подмена тезиса, ибо он не опровергается, а только показывается несостоятельность и необоснованность его доказательства либо путем использования ненадежных доводов, либо путем раскрытия противоречий в рассуждениях, либо, наконец, путем приведения таких фактов из жизни и поведения оппонента, которые не имеют никакого отношения к доказываемому тезису. Ведь тезис остается истинным, даже если его доказательство будет ложным, и его истинность не зависит от того, кто высказывает его, пусть даже это будет человек, который вам совершенно не нравится.

Другой разновидностью ошибок, связанных с нарушением тождества тезиса, является отступление от него в процессе рассуждения. Самой грубой формой можно назвать прямой отход от исходного тезиса обычно в середине спора или полемики; происходит это чаще всего тогда, когда сам тезис сформулирован недостаточно определенно, ясно и точно. При этом отступление может быть незаметным, не сразу бросающимся в глаза и потому считаться несущественным изменением формулировки тезиса, но тем не менее, это уже будет не прежний тезис. В логической литературе различают разные способы отступления от тезиса, начиная от простого, грубого перехода от прежнего тезиса к другому и кончая так называемыми диверсиями. Суть последних состоит в том, чтобы перевести спор на другую тему и вместо первоначального тезиса незаметно выдвинуть другой тезис, как-то связанный с исходным, но не тождественный с ним.

К числу распространенных приемов подмены и отхода от тезиса относится его расширение или сужение, а также усиление или ослабление. Обычно эти приемы используются в ходе полемики, причем тот, кто доказывает свой тезис, старается его сузить, когда сталкивается с трудностями его доказательства. Наоборот, кто возражает, стремится расширить тезис, чтобы его оппонент не смог его доказать. Так, когда одна партия возражает против каких-то конкретных реформ, например, по приватизации собственности, то их оппоненты расширяют выдвигаемый тезис и обвиняют своих противников в отказе от реформ вообще.


2. Правила, относящиеся к аргументам доказательства, требуют, во-первых, чтобы аргументы, которые фигурируют как посылки вывода, были истинными или доказанными суждениями. Во-вторых, истинность аргументов должна быть доказана независимо от тезиса. В-третьих, аргументы должны быть достаточно обоснованными, чтобы служить в качестве подтверждения тезиса. Это правило, как легко заметить, касается главным образом вероятностных (или правдоподобных) рассуждений.

При нарушении правил, относящихся к аргументам, возникает в основном три вида ошибок.

Во-первых, когда аргументы (или доводы) являются либо ложными, либо произвольными. Такие доводы обыкновенно используются в публичном споре, когда обсуждается запутанный вопрос и слушатели не в состоянии следить за всеми перипетиями полемики, а иногда и оппонент не может оценить довод как истинный или ложный, а потому принимает его на веру. Другая трудность здесь заключается в том, что зачастую аргументы имеют относительно истинный характер, т.е. наряду с истиной в них присутствует заблуждение.

Произвольные доводы также нередко используются как посылки для доказательства выдвигаемого тезиса. Формы их весьма разнообразны, но суть одна: все они не в состоянии служить основанием для доказательства. Поэтому опирающиеся на них доказательства являются ошибочными, независимо от того, совершаются ли они непреднамеренно либо преднамеренно, с целью ввести в заблуждение слушателей или оппонента. Очень часто для этого обращаются к доводам, которые имеют негативный характер, хотя последние и не имеют отношения к защищаемому тезису. Так, стихийное недовольство масс, выливающееся в митинг, демонстрацию или забастовку нередко квалифицируется как анархия, подрывающая основы государства, хотя на самом деле это может быть законной формой борьбы трудящихся за свои права.

Во-вторых, аргументы могут оказаться недостаточно обоснованными или совсем необоснованными для доказательства тезиса. Типичной ошибкой такого рода является "предвосхищение основания", когда тезис не доказывается аргументами, логически не следует из них. Последние лишь предвосхищают его. Другими словами, такие аргументы, хотя и не представляются ложными или произвольными, но сами нуждаются в доказательстве. Аналогичный характер имеет ошибка, получившая название порочного круга в доказательстве. В этом случае выдвигаемый тезис А доказывается с помощью аргументов В, которые в свою очередь доказываются или обосновываются ссылкой на суждение А. Наиболее часто подобные ошибки могут возникнуть тогда, когда сам тезис сформулирован неясно, сбивчиво, неопределенно, что допускает множество его толкований. В этих условиях легко находятся аргументы для "доказательства", которые по своему содержанию оказываются эквивалентными тезису, но выраженными другими словами. Например, в гл. 5 мы рассматривали равновероятность событий, которую раньше доказывали или обосновали с помощью аргументов, опирающихся на их одинаковую (или равную) возможность. Однако сама равновозможность может быть обоснована лишь с помощью аргументов, основанных на равновероятности. Такого рода доказательств, обоснований и определений, сводящихся к словесному видоизменению какого-либо аргумента, основания или термина, можно встретить немало. Чтобы избежать подобных ошибок, надо ясно различать смысл и конкретное содержание суждений, которые выступают в качестве аргумента и тезиса доказательства. Особенно это касается суждений, которые являются сходными или почти эквивалентными по своему языковому выражению. Если не замечать смыслового различия между ними, то их легко можно менять местами и тем самым впасть в "порочный круг".

В-третьих, когда пытаются доказать тезис с помощью аргументов, которые логически слабее тезиса. Одно суждение считается логически более сильным, когда из него вытекает другое суждение как логическое следствие. Так, в математике аксиомы являются более сильными утверждениями, чем теоремы. Поэтому мы допустили бы явную ошибку, если стали доказывать аксиомы с помощью теорем. Аналогично этому, в любом доказательстве аргументы должны быть сильнее тезиса. Последний должен логически следовать из аргументов, но не наоборот.
3. Правила, относящиеся к демонстрации тезиса, требуют, чтобы во всех случаях доказательства тезис должен следовать из аргументов, как посылок, по общепризнанным правилам доказательства. Эти правила, как мы уже знаем, переносят истинность посылок на истинность заключения. Именно поэтому тезис доказательства в таком случае оказывается достоверно истинным.

Ошибки, которые возникают из-за нарушения правил демонстрации, весьма разнообразны, но суть их в общем сводится к тому, что при этом нарушается логическая связь между аргументами и тезисом доказательства. Тщательный анализ показывает, что в таких случаях тезис логически не следует из аргументов, как оснований доказательства. Знание логических правил доказательства как раз и служит для того, чтобы не допускать подобные ошибки, а если они возникают, то найти причину их появления. В простейших случаях такие ошибки можно вскрыть, опираясь на здравый смысл и выработанные в процессе занятий навыки мышления. В сложных случаях, когда приходится иметь дело с запутанными рассуждениями или тонкими софизмами, становится неизбежным обращение к логике, к ее правилам умозаключений и доказательств.

Первый вид логических ошибок чаще всего возникает в ходе спора, полемики или публичного диспута и называется мнимым следованием. Обычно, пытаясь доказать свой тезис, участники спора опираются не столько на логическую связь между аргументами, сколько на чисто психологические, нравственные, политические и тому подобные нелогические факторы, которые будто бы обосновывают и подкрепляют выдвигаемый тезис. Поскольку на убеждения слушателей оказывают влияние не только доводы разума, но и чувства, эмоции, склонности и предубеждения, то у них может возникнуть иллюзия о необходимой связи между аргументами и защищаемым оратором тезисом, хотя на деле такая связь является чисто мнимой.

Второй вид логических ошибок, связанных с демонстрацией тезиса, состоит в наличии логических противоречий в рассуждениях. Хорошо известно, что из логически противоречивой мысли можно получить как истинное, так и ложное утверждение. А это означает, что, если в рассуждении где-то имеется противоречие, то тем самым оно оказывается неправильным и потому не гарантирует истинности тезиса доказательства. Нередко корни таких противоречий следует искать в тех неопределенных, неясных и противоречивых понятиях и утверждениях, которые служат исходной основной всех дальнейших рассуждений. Обычно в науке подобные противоречия обнаруживаются после того, когда развитие теории приводит к парадоксам. Мы отмечаем, что на начальном этапе развития анализа бесконечно малых, последние рассматривались то как нули, то как весьма малые конечные величины. В дальнейшем употребление такого понятия привело к противоречивым результатам и парадоксам, которые были преодолены с помощью теории пределов, рассматривающей бесконечно малые величины как величины, имеющие своим пределом нуль.

Третий вид логических ошибок при демонстрации тезиса связан с многочисленными случаями нарушения условий и ограничений, относящихся к аргументам. Так, при определенных условиях места, времени и обстоятельств связь между аргументами и тезисом рассматривается как логически необходимая, а доказательство считается вполне обоснованным. Но нередко такие условия игнорируются, и то, что было верным при определенных условиях, выдается за утверждение безусловное, верное при всех обстоятельствах. Возможна и противоположная ошибка, когда из безусловно-истинных аргументов выводится тезис ограниченного, условного характера, хотя первый случай встречается гораздо чаще, чем второй. Типичные ошибки такого рода встречаются, например, в спорах на общественно-политические, научные, медицинские и другие темы, когда они происходят между мало сведущими в этих делах людьми. Например, когда доказывают, что в условиях перехода к рынку, необходимо осуществлять наряду с рыночным также государственное регулирование, то некоторые противники таких мер пытаются опровергнуть данный тезис на том основании, что это может привести снова к административно-командной системе экономики. Здесь ошибка состоит в том, что сказанное с условием превращается в безусловное утверждение. Ведь в аргументе речь идет о переходном периоде и ограниченном вмешательстве государства в регулирование рынка, а опровержение строится на утверждении, что государственное регулирование полностью исключает действие рыночных законов. На подобного же рода недоразумениях основывается недоверие к гомеопатическим средствам и методам лечения. Все знают, что мышьяк – сильнейший яд, но в крайне небольших дозах он оказывается полезным для лечения ряда заболеваний. Таким образом здесь, как и всюду, следует учитывать условия и ограничения, относящиеся к нашим доводам, которые только и дают нам основание говорить о доказательстве тезиса.

Поскольку подобного рода ошибки в повседневной жизни встречаются довольно часто, то юридическая наука и практика выработали специальный деловой язык для составления различных контрактов, обязательств и других документов, в которых стремятся по возможности свести к минимуму появление таких ошибок. Хотя язык деловых документов при этом значительно усложняется, но учитывает все оговорки и условия, которые в обычной речи опускаются, так как легко подразумеваются. Но когда возникает, например, имущественный спор, эти условия сторонами могут истолковываться по-разному, в связи с чем и становится необходимым зафиксировать их в документе.

Мы выделили лишь основные правила доказательства, которые относятся к его составным частям, и показали, какие ошибки возникают при их нарушении. Очевидно, что в реальном доказательстве в ходе спора или полемики все они взаимодействуют друг с другом, так что нарушение, например, требований к аргументам влияет не только на тезис, но и на способ демонстрации последнего. Кроме того, процесс убеждения зависит как от обоснованности аргументов и правильной их логической связи с тезисом, так и от множества нелогических даже нерациональных факторов. Ведь в ходе полемики, спора, публичного диспута оратор действует не только а разум, но и на чувства, волю, эмоции и тому подобные психические качества людей. Важно только, чтобы чувства и эмоции подкрепляли доводы разума, а не возобладали над ними, не использовались для логических ошибок и софизмов.

7.7. Паралогизмы, софизмы и парадоксы


Логические ошибки бывают непреднамеренные и преднамеренные. Первые из них возникают из-за неосознаваемого нарушения правил логики и называются паралогизмами. В переводе с древнегреческого паралогизм означает не правильное рассуждение, которое появляется вследствие нарушения вывода, хотя в настоящее время к паралогизмам относят также ошибки, связанные с нарушением правил, касающихся тезиса и аргументов доказательства.

Софизмы, как уже отмечалось раньше, представляют собой преднамеренные, сознательно совершаемые ошибки, рассчитанные на то, чтобы ввести противника в заблуждение, выдать ложь за истину и тем самым добиться победы в споре. Еще в античной риторике софисты для этой цели использовали не только сознательно и обдуманно построенные логические ошибки, но и всевозможные психологические уловки и элементы внушения с тем, чтобы максимально воздействовать на убеждения своих слушателей. Очень часто софисты в своих спорах опирались на принцип относительности истины, делая из него неправомерный вывод, что объективной истины не существует и поэтому следует руководствоваться мнением и стремиться к мнению, а не к истине.

С логической точки зрения принципиальной разницы между паралогизмом и софизмом не существует, но с этической и практической точки зрения разница между ними весьма существенна.


Паралогизмы возникают случайно, произвольно и непреднамеренно и являются результатом невнимательности, незнания или недостаточного знания логики, отсутствия необходимых навыков мышления. Софизмы же основываются на сознательном нарушении правил логики, а также игнорировании и несоблюдении законов и правил той конкретной науки, к которой они применяются. Обычно при этом нарушаются такие правила, которые не сразу бросаются в глаза, внимание слушателя отвлекается от главного пункта утверждения и концентрируется на частностях и второстепенных деталях и т.п.
В качестве примера рассмотрим софистическое "доказательство" утверждения 2 х 2 = 5. Начнем с числового тождества:

4 : 4 = 5 : 5, отсюда получим



4(1:1) = 5 (1:1), сократив равные отношения, заключенные в скобки, будем иметь 4 = 5, или 2 х 2 = 5.
Читателю рекомендуем найти ошибку в этом рассуждении.

Парадоксы отличаются от паралогизмов и софизмов тем, что они возникают не в результате непреднамеренных и намеренных логических ошибок, а из-за неясности, неопределенности и даже противоречивости некоторых исходных принципов и понятий той или иной науки или же общепринятых норм, приемов и методов познания в целом. Парадоксы последнего рода были широко известны еще в античном мире. Самым простейшим из них является, пожалуй, парадокс о куче. Если от кучи песка, гравия и тому подобных мелких предметов начать брать по одной, двум, трем штукам и т.д., то куча от этого не исчезнет. Однако, продолжая этот процесс дальше, мы дойдем до того, что у нас останется один предмет и куча исчезнет. Нетрудно заметить, что указанный парадокс возникает потому, что чисто математическая операция вычитания в данном случае отождествляется с реальной, физической операцией, в которой количественные изменения приводят к качественным изменениям.
Интересным кажется парадокс, сформулированный еще в IV в. до н.э. Эвбулидом, который можно выразить так: является ли истинным или ложным высказывание "то, что я говорю – ложно" или "данное высказывание ложно"? Допустим, что оно истинно, тогда его следует считать ложным, ибо я говорю правду. Предположим, что оно ложно, тогда оно будет истинным, так как я действительно говорю неправду. Отсюда видно, что парадокс возникает тогда, когда рассуждают по правилам логики, а взаимоисключающие заключения здесь получаются не вследствие нарушения логических правил, а по другим причинам. В данном случае парадоксальные результаты обязаны тому, что мы не проводим различия между объектным языком, на котором сформулировано наше высказывание, и метаязыком, на котором говорят об объектном языке. На этом смешении разных уровней языка основываются и многочисленные дилеммы, известные еще в древности. В качестве примера сошлемся на дилемму, которая возникает перед сфинксом, который обещал отцу ребенка вернуть его, если тот отгадает, вернет ли он ребенка. Если отец скажет, что сфинкс не вернет ребенка, то перед сфинксом возникнет неразрешимая дилемма, аналогичная с вышеописанным парадоксом.
На первый взгляд такие парадоксы кажутся простыми курьезами и служат для логических упражнений. Нельзя, однако, забывать, что парадоксы периодически возникают в развитии каждой науки и служат симптомом неблагополучия в обосновании ее теоретических построений. Мы уже упоминали о парадоксах в анализе бесконечно малых, приведших к кризису в его основаниях. В настоящее время мы являемся свидетелями нового кризиса в основаниях классической математики, которая базируется на теории бесконечных множеств, созданной Г. Кантором. Исходя из самого определения множества, данного Кантором, известный английский философ и математик Б. Рассел обнаружил парадокс, который он популярно разъяснил с помощью примера с деревенским парикмахером, который бреет тех и только тех жителей деревни, которые не бреются сами. На вопрос, как он должен поступить с собой, нельзя дать никакого определенного ответа, точнее говоря, из этого условия можно логически вывести два взаимоисключающих ответа. Аналогично будет обстоять дело с множеством всех тех множеств, которые не содержат себя в качестве своего элемента. На вопрос, куда отнести такое множество, также нельзя дать определенного ответа.

В дальнейшем были открыты другие парадоксы, которые привели к кризису в основаниях математики, т.е. в том фундаменте, на котором держится вся остальная часть здания математики. Никакого окончательного решения вопроса о парадоксах теории множеств до сих пор не найдено, хотя были предложены многие методы и программы избавления от них. Одна из программ предлагает отказаться от канторовского уподобления бесконечного множества конечному, т.е. от актуальной бесконечности, и рассматривать бесконечность как процесс. Другие программы пытаются аксиоматизировать теорию множеств, осуществить формализацию математики и доказать непротиворечивость ее систем и т.д. Все эти исследования значительно обогатили наши знания, дали мощный толчок развитию математической логики, теории алгоритмов, программированию и компьютеризации научного знания и практических действий. Но они не решили основную проблему.

Все это свидетельствует о том, что возникновение парадоксов не является чем-то незакономерным, неожиданным, случайным в истории развития научного мышления. Их появление сигнализирует о необходимости пересмотра прежних теоретических представлений, выдвижения более адекватных понятий, принципов и методов исследования. Не зря же великий Пушкин восклицал: "И гений, парадоксов друг!".
Проверьте себя

1. Чем отличается доказательство от дедуктивного умозаключения?

2. Можно ли использовать гипотезы при доказательстве?

3. Как используются условные и разделительные умозаключения при доказательстве?

4. Чем отличаются косвенные доказательства от прямых?

5. Почему в науке, особенно в математике, обращаются к косвенным доказательства?

6. На какой основной логический закон опираются в косвенных доказательствах?

7. Что называют структурой (строением) доказательства?



8. Проверьте, является ли доказательством формула:
((АВ)  ¬ В)) → А.
9. Что называют опровержением и какие способы опровержения используются в науке?

10. Перечислите основные правила доказательства и опровержения.

11. Почему недопустимы логические противоречия в доказательстве?

12. Покажите несостоятельность следующего доказательства: " Так как мышьяк сильнейший яд, то он не может использоваться для лечения и в крайне малых дозах".

13. Чем отличается паралогизм от софизма?

14. Как возникают парадоксы в науке?

Каталог: sites -> default -> files
files -> Валявский Андрей Как понять ребенка
files -> Народная художественная культура. Профиль Теория и история народной художественной культуры
files -> Отчет о научно-исследовательской работе за 2014 год ростов-на-Дону 2014
files -> Учебно-методический комплекс дисциплины философия для образовательной программы по направлениям юридического факультета: Курс 1
files -> Цветков Андрей Владимирович, кандидат психологических наук, доцент кафедры клинической психологии программа
files -> Программа итогового (государственного) комплексного междисциплинарного экзамена по направлению 521000 (030300. 62) «Психология»


Поделитесь с Вашими друзьями:
1   ...   41   42   43   44   45   46   47   48   ...   54


База данных защищена авторским правом ©znate.ru 2019
обратиться к администрации

    Главная страница