Г. И. Рузавин логика и аргументация



страница20/54
Дата10.05.2018
Размер3.9 Mb.
1   ...   16   17   18   19   20   21   22   23   ...   54

4 ГЛАВА. Логика предикатов


В исчислении высказываний мы рассматривали отношения между высказываниями, не входя в анализ логической структуры отдельных высказываний. Правда, для первоначального знакомства с ними и их классификациями нам пришлось говорить о субъектно-предикатной структуре суждений традиционной логики, а при их делении на общие и частные упомянуть о кванторах общности и существования. Но все эти понятия никак не использовались в исчислении высказываний, где последние берутся как нечто единое, нерасчлененное целое. Нередко поэтому отдельные высказывания рассматриваются как логические атомы, образующие посредством логических операций – отрицания, конъюнкции, дизъюнкции, импликации и эквиваленции – сложные высказывания, или молекулы.

Теперь наступило время перейти к более глубокому анализу высказываний, связанному с изучением их внутренней логической структуры. Уже традиционная логика в своем учении о силлогизмах опиралась на субъектно-предикатную структуру суждений и учитывала их количественную характеристику с помощью таких слов, как "все", "любой", "каждый", "никакой", "некоторые" и т.п.

Как отмечалось в гл. 1, современная логика отличается от традиционной как по глубине и точности исследования, так и по широте применения своих методов. Если традиционная логика ограничивалась логическим анализом отношений между предметами и их свойствами, то современная логика анализирует различные отношения между самими предметами. В результате логика свойств выступает хотя и как важный, но частный случай логики отношений. Тем не менее и с исторической и с практической точек зрения представляется целесообразным обсудить в этой главе элементы теории силлогизмов, во-первых, потому, что такие умозаключения широко используются в повседневных и даже научных рассуждениях, во-вторых, потому, что читатель может сравнить традиционный подход с современным и убедиться в значительной эффективности и точности последнего.

4.1. Свойства, отношения и предикаты


Свойства вещей реального мира представляют собой результат взаимодействия их с другими вещами, ибо без этого они не могли бы проявиться и мы не были бы в состоянии судить о них. В самом деле, мы говорим, например, что алмаз является самым твердым минералом, а графит – мягким потому, что они различаются по свойству твердости и пластичности.

В традиционной логике свойство отображается в суждении предикатом, а вещь, которой принадлежит это свойство, – субъектом. Следует, однако, различать субъект и предикат в грамматике и логике, подобно тому как мы различаем предложение и суждение (высказывание) Суждения, имеющие субъектно-предикатную структуру, отображают часто встречающиеся в действительном мири связи между вещами, событиями и явлениями, с одной стороны, и их свойствами и признаками, с другой. Именно эти связи и стали предметом изучения традиционной логики. Хотя различные виды отношений, такие, как "больше", "меньше", "выше", "ниже", "дальше", "ближе" и т.п., не говоря уже об отношениях родства встречаются часто, но традиционная логика либо совершенно не интересовалась логическим анализом отношений, либо пыталась свести их к субъектно-предикатной структуре.

Впервые изучением логики отношений занялись математики, и ее основоположником считается английский математик и логик О. де Морган. Интерес к данной логике со стороны математиков вовсе не случаен, поскольку именно в этой науке встречаются самые разнообразные отношения (равенства, неравенства, подобия, между, включения, конгруэнтности, параллельности и т.д.). Такие отношения представлены в формулировке аксиом различных математических дисциплин, и поэтому для доказательства теорем необходимы точные определения тех логических операций, которые можно производить над отношениями.

С логической точки зрения отношения можно рассматривать как обобщение обычного предиката традиционной логики, выражающего свойства предметов. Если этот предикат характеризует один-единственный предмет или, как мы будем говорить в дальнейшем, объект, то в логике отношений он определяет отношение между разными объектами. Так, когда мы говорим, что число 5 больше, чем 3, то тем самым устанавливаем между ними отношение "больше" по величине.

Отношение между двумя объектами называют бинарным, (двучленным), между тремя – тернарным и т.д. Объекты, которые заполняют эти места, характеризуют соответствующий предикат.

Символически это представляется так:

Р (x1, x2,..., хn),

где Р обозначает предикат, a x1, х2,..., хn – соответствующие объекты. Если п = 0, тогда предикат будет нерасчлененным высказыванием, которое рассматривалось в предыдущей главе, при п = 1 предикат представляет свойство, при n = 2 – бинарное отношение, при п = 3 – тернарное отношение и т.д.

С логико-математической точки зрения предикат можно рассматривать как пропозициональную функцию. В отличие от математических функций, где аргументами служат числа и другие математические объекты, в пропозициональной функции аргументами являются только высказывания. Если такой предикат выражает свойство, например "быть студентом", то, подставив вместо аргумента х фамилии разных лиц, мы получим различные высказывания, истинные и ложные, т.е., если Иванов действительно студент, то он будет удовлетворять функции Р(х), где Р обозначает свойство "быть студентом". Аналогично, если Ч(х) обозначает свойство "быть четным числом", то число 4 удовлетворяет этой функции, а число 5 – нет. Обратите внимание, что в этом случае вместо обычных чисел аргументами служат высказывания о числах.

Предикат Р(х,у) является пропозициональной функцией от двух аргументов и выражает бинарное отношение между двумя объектами, например "Москва южнее, чем С.-Петербург". В данном случае предикат Р обозначает отношение "быть южнее". Если вместо "Москвы" взять "Мурманск", то получится ложное высказывание. Отсюда становится ясно, что предикат или пропозициональная функция сами по себе не являются высказываниями, и потому не могут считаться ни истинными _ни ложными. Они становятся истинными или ложными высказываниями после того, как вместо их аргументов подставляются конкретные высказывания. Такой функциональный подход к предикатам дает возможность обращаться с ними как со специальными видами функций, аргументами которых являются не математические, а логические объекты, а именно высказывания.

Объектами же рассуждений могут быть самые разнообразные предметы как реального, так и идеального мира, события, явления, процессы. Предикаты, которые их характеризуют, в принципе позволяют выделить класс (или множество) этих объектов. Такой класс в логике называют универсумом рассуждения. Например, универсумом рассуждений в арифметике является множество чисел, в химии– различные химические элементы, простые и сложные вещества, в которые они входят, в биологии – живые организмы, в социальных науках– группы, коллективы, классы людей и соответствующие общественные структуры. Логика не изучает и не определяет универсумы конкретных видов рассуждений. Это составляет задачу конкретных наук. Поэтому в логическом анализе такие универсумы предполагаются заданными.

Существует два принципиально отличных способа задания универсума рассуждения, первый из которых состоит в систематическом перечислении всех тех объектов, которые составляют класс объектов, характеризуемых данным свойством или отношением. Очевидно, что такой универсум должен быть конечным множеством. Однако в научном познании приходится иметь дело не только с конечными, но и бесконечными множествами объектов. Например, в математике уже натуральный ряд чисел является бесконечным множеством, поскольку к любому, сколь угодно большому натуральному числу можно прибавить единицу и тем самым неограниченно продолжать этот процесс. При формулировании научных законов также часто приходится обращаться к бесконечному множеству объектов. Так, в законе всемирного тяготения Ньютона утверждается, что два любых тела притягиваются друг к другу с гравитационной силой, прямо пропорциональной произведению их масс и обратно пропорциональной квадрату расстояния между ними. При этом предполагается, что количество таких тел во Вселенной бесконечно много. Очевидно, что поскольку бесконечное множество нельзя задать с помощью конечного списка его элементов, то приходится для этого обращаться к некоторому общему правилу или закону образования его элементов. Например, зная, что четными называются числа, делящиеся на 2, всегда можно определить, является ли рассматриваемое число четным или нечетным.



Таким образом, для определения универсума рассуждений требуется ответить на вопрос, принадлежит ли данный объект множеству, представляющему универсум или нет.

Хотя в принципе, если свойство или отношение сформулированы достаточно ясно и четко, установить универсум можно, но на практике сделать это бывает трудно из-за неопределенности критериев разграничения множеств объектов. Порой бывает, например, нелегко ответить на вопрос, принадлежит ли данный объект к множеству растений или животных, металлов или металлоидов, устойчивых или неустойчивых систем, когда заходит речь о переходных, промежуточных явлениях.

Но в большинстве случаев при наличии предиката, выражающего свойство или отношение, можно всегда установить его универсум, или, как предпочитают говорить математики, область значений переменных пропозициональной функции, которую называют областью определения функции. Если эта область точно не установлена, то пропозициональная функция при подстановке на место аргументов конкретных объектов превращается в бессмысленную фразу, а не осмысленное высказывание – истинное или ложное. Нередко бывает так, что функция оказывается неопределенной в некоторой области значений. Например, в математике говорят, что уравнение х2 + 1=0 не определено в области действительных чисел, ибо имеет мнимый корень. Чтобы гарантировать точность рассуждений, в математике и логике ясно и однозначно определяют ту предметную область, к которой относятся переменные пропозициональных функций или предикатов.

В простейшем исчислении предикатов, которое называют также узким или исчислением предикатов первой ступени, в качестве значения переменных будут рассматриваться индивиды или объекты. Но можно в качестве значений переменных брать также предикаты, связанные кванторами. Такое исчисление называют исчислением предикатов второй ступени. Дальнейшие обобщения приводят к исчислениями предикатов высших ступеней.

Так же, как и в исчислении высказываний, мы будет предполагать, что высказывание Р(х,у), получаемое при любой паре значений из области ее значений, может быть либо истинным, либо ложным. Другими словами, в исчислении предикатов, как и в исчислении высказываний, выполняется закон исключенного третьего. Но при этом, как мы увидим в дальнейшем, сама процедура получения значения истинности сложного высказывания, состоящего из элементарных высказываний, значительно усложняется: ведь в таком случае с ним приходится соотносить не один, а пару, тройку или вообще п-ку объектов из области значений переменных.

4.2. Кванторы


Существенное отличие логики предикатов от логики высказываний заключается также в том, что первая вводит количественную характеристику высказываний или, как говорят в логике, квантифицирует их. Уже в традиционной логике суждения классифицировались не только по качеству, но и по количеству, т.е. общие суждения отличались от частных и единичных. Но никакой теории о связи между ними не было. Современная логика рассматривает количественные характеристики высказываний в специальной теории квантификации, которая составляет неотъемлемую часть исчисления предикатов.

Для квантификации (количественной характеристики) высказываний эта теория вводит два основных квантора: квантор общности, который мы будем обозначать символом (х), и квантор существования, обозначаемый символом (Ех). Они ставятся непосредственно перед высказываниями или формулами, к которым относятся. В том случае, когда кванторы имеют более широкую область действия, перед соответствующей формулой ставятся скобки.



Квантор общности показывает, что предикат, обозначенный определенным символом, принадлежит всем объектам данного класса или универсума рассуждения.

Так, суждение: "Все материальные тела обладают массой" можно перевести на символический язык так:



(х) М (х),

где х – обозначает материальное тело:

М – массу;

(х) – квантор общности.

Аналогично этому утверждение о существовании экстрасенсорных явлений можно выразить через квантор существования:



(Ех) Э (х),

где через х обозначены явления:

Э – присущее таким явлениям свойство экстрасенсорности;

(Ex) – квантор существования.

С помощью квантора общности можно выражать эмпирические и теоретические законы, обобщения о связи между явлениями, универсальные гипотезы и другие общие высказывания. Например, закон теплового расширения тел символически можно представить в виде формулы:



(х) (Т(х) → P(х)),

где (х) – квантор общности;



Т(х) – температура тела;

Р(х) – его расширение;

–> знак импликации.



Квантор существования относится только к определенной части объектов из данного универсума рассуждений. Поэтому, например, он используется для символической записи статистических законов, которые утверждают, что свойство или отношение относится только для характеристики определенной части изучаемых объектов.

Введение кванторов дает возможность прежде всего превращать предикаты в определенные высказывания. Предикаты сами по себе не являются ни истинными, ни ложными. Они становятся таковыми, если вместо переменных либо подставляются конкретные высказывания, либо, если они связываются кванторами, квантифицируются. На этом основании вводится разделение переменных на связанные и свободные.



Связанными называются переменные, подпадающие под действие знаков кванторов общности или существования. Например, формулы (х) А (х) и (х) (Р (х) → Q(x)) содержат переменную х. В первой формуле квантор общности стоит непосредственно перед предикатом А(х), вовторой – квантор распространяет свое действие на переменные, входящие в предыдущий и последующий члены импликации. Аналогично этому квантор существования может относиться как к отдельному предикату, так и к их комбинации, образованной с помощью логических операций отрицания, конъюнкции, дизъюнкции и др.

Свободная переменная не подпадает под действие знаков кванторов, поэтому она характеризует предикат или пропозициональную функцию, а не высказывание.

С помощью комбинации кванторов можно выразить на символическом языке логики достаточно сложные предложения естественного языка. При этом высказывания, где речь идет о существовании объектов, удовлетворяющих определенному условию, вводятся с помощью квантора существования. Например, утверждение о существовании радиоактивных элементов записывается с помощью формулы:

(Ex) R(x),

где R обозначает свойство радиоактивности.

Утверждение, что существует опасность для курящего заболеть раком, можно выразить так: (Ех) (К(х) → P(x)), где К обозначает свойство "быть курящим", а Р – "заболеть раком". С известными оговорками то же самое можно было выразить» посредством квантора общности:

(х) (К(х) → Р(х)). Но утверждение, что всякий курящий может заболеть раком, было бы некорректным, и поэтому его лучше всего записать с помощью квантора существования, а не общности.

Квантор общности используется для высказываний, в которых утверждается, что определенному предикату А удовлетворяет любой объект из области его значений. В науке, как уже говорилось, квантор общности используется для выражения утверждений универсального характера, которые словесно представляются с помощью таких фраз, как "для всякого", "каждый", "всякий", "любой" и т.п. Путем отрицания квантора общности можно выразить общеотрицательные высказывания, которые в естественном языке вводятся словами "никакой", "ни один", "никто" и т.п.

Разумеется, при переводе на символический язык утверждений естественного языка встречаются определенные трудности, но при этом достигается необходимая точность и однозначность выражения мысли. Нельзя, однако, думать, что формальный язык богаче естественного языка, на котором выражаются не просто смысл, но и разные его оттенки. Речь поэтому может идти только о более точном представлении выражений естественного языка как универсального средства выражения мыслей и обмена ими в процессе общения.

Чаще всего кванторы общности и существования встречаются вместе. Например, чтобы выразить символически утверждение: "Для каждого действительного числа х существует такое число у, что х будет меньше у", обозначим предикат "быть меньше" символом <, известным из математики, и тогда утверждение можно представить формулой: (х) (Еу) < (х, у). Или в более привычной форме: (х) (Еу) (х < у). Это утверждение является истинным высказыванием, поскольку для любого действительного числа х всегда существует другое действительное число, которое будет больше него. Но если мы переставим в нем кванторы, т.е. запишем его в форме: (Еу) (х) (х < у), тогда высказывание станет ложным, ибо в переводе на обычный язык оно означает, что существует число у, которое будет больше любого действительного числа, т.е. существует наибольшее действительное число.

Из самого определения кванторов общности и существования непосредственно следует, что между ними существует определенная связь, которую обычно выражают с помощью следующих законов.


Каталог: sites -> default -> files
files -> Валявский Андрей Как понять ребенка
files -> Народная художественная культура. Профиль Теория и история народной художественной культуры
files -> Отчет о научно-исследовательской работе за 2014 год ростов-на-Дону 2014
files -> Учебно-методический комплекс дисциплины философия для образовательной программы по направлениям юридического факультета: Курс 1
files -> Цветков Андрей Владимирович, кандидат психологических наук, доцент кафедры клинической психологии программа
files -> Программа итогового (государственного) комплексного междисциплинарного экзамена по направлению 521000 (030300. 62) «Психология»


Поделитесь с Вашими друзьями:
1   ...   16   17   18   19   20   21   22   23   ...   54


База данных защищена авторским правом ©znate.ru 2019
обратиться к администрации

    Главная страница