Энциклопедия в четырех томах научно-редакционный совет



страница84/393
Дата11.03.2018
Размер9.68 Mb.
1   ...   80   81   82   83   84   85   86   87   ...   393
ИНТУИЦИОНИЗМ — одно из трех главных направлений (наряду с логицизмом и формализмом), традиционно выделяемых в основаниях математики. Основное отличие интуиционизма от других направлений в том, что он ставит иную цель математике: не доказательство «истинных» теорем, а поиск математических (умственных, в терминологии первоначального интуиционизма) конструкций, органично соединяющих в себе построение и его обоснование.

Для общей характеризации направлений, выросших из интуиционизма, часто пользуются термином конструктивизм. Поэтому стоит различать интуиционизм в узком смысле (брауэровский), российский конструктивизм (см. Конструктивное направление) и различные частично конструктивные направления, часто также называемые современным интуиционизмом. Предшественниками интуиционизма являются немецкий математик 19 в. Л. Кронекер, французские эффективисты (см. Эффективизм), А. Пуанкаре и Э. Борель. Они с разных позиций отмечали признаки неблагополучия в математике, связанные с тем, что в классической математике доказательства многих теорем существования не дают построений искомых объектов, и пытались несколько ограничить математические конструкции для устранения данного недостатка.

Началом интуиционизма как направления считается 1907, когда Л. Э. Я. Брауэр показал, что косметическим ремонтом выявившееся расхождение понятий «существование» и «построение» не устранить и что корни многих нежелательных свойств классической математики уходят в классическую логику

До 1945 интуиционизм развивался преимущественно в Голландии, хотя некоторые фундаментальные работы были созданы в России, Австрии и Польше учеными, не причисляв-




==136


ИНТУИЦИОНИЗМ


шями себя к данному направлению. Ныне самой сильной школой интуиционизма остается голландская, но, помимо нее, имеются, в частности, американская и русская школы. Основания для выводов Брауэра — с несколько модернизированной точки зрения — таковы: Согласно теореме Геделя о неполноте в достаточно богатой теории имеется такая формула G, что ни она, ни ее отрицание недоказуемы. При помощи классической логики легко вывести

3x((G^>x=0)&(\G=>x=Ï)).

Обозначим данную формулу ЗхА(х). Ни для какого конкретного л·о нельзя доказать А(хо).

В теории множеств ситуация ухудшается лишь незначительно. Аксиома выбора дает возможность построить такую доказуемую формулу ЗхВ(х), что нельзя построить формулу С(х), для которой 3 ! χ С(х) и Vx(C(x) => В(х)). Такая же ситуация возникает при использовании альтернативы к аксиоме выбора — аксиомы детерминированности.

Согласно анализу А. А. Маркова, классическая математика базируется на трех абстракциях: абстракции отождествления, не позволяющей использовать свойства, различающие равные объекты; абстракции потенциальной осуществимости, позволяющей пренебречь физическими ограничениями на реализуемость очень больших конечных объектов и процессов, и абстракции актуальной бесконечности, дающей возможность мыслить бесконечные совокупности как завершенные и использовать бесконечные множества и бесконечные процессы для построения других математических объектов. Брауэр принял две первые абстракции и отверг третью. В этом с ним солидарны почти все нынешние продолжатели конструктивных традиций в математике.

В некоторых разделах современного интуиционизма это допущение ослабляется, а в некоторых — усиливается. Но в любом случае принимаются во внимание принципиальные ограничения выполнимых построений: необходимость сведения любой новой задачи к уже решенным, чтобы представить новое построение как композицию старых.

При таком подходе логика не может рассматриваться как нечто данное a priori, она должна подбираться в соответствии с классом рассматриваемых объектов и с классом допустимых методов решения задач. Так, классическая логика оказывается либо логикой конечных объектов, либо логикой всех теоретико-множественных построений с аксиомой выбора.

Сама интерпретация логических формул изменяется в корне. Значения истинности представляют собой нечто второстепенное по сравнению с конкретным построением, проведенным при доказательстве теоремы. Поэтому формулы интерпретируются как задачи, логические связки — как преобразования задач, методы доказательства — как методы сведения новых задач к уже решенным либо принятым в качестве решенных. Брауэр предложил воспользоваться для перестройки математики логикой, подобной классической, за исключением законов исключенного третьего и снятия двойного отрицания (которые в данном контексте эквивалентны) — интуиционистской логикой. Он отказался от многих объектов, созданных в теоретико-множественной математике, и ограничился теми, которые хотя бы косвенно сводятся к двум исходным сущностям: к конструктивным объектам, строящимся как конечные конструкции из конечного числа исходных ясно различимых объектов, и к последовательностям выбора, пред

ставляющим из себя методы последовательного конструирования потенциально бесконечного числа исходных объектов. Примерами последовательностей выбора являются алгоритмы, последовательности измерений физических величин и т. п. Первоначально Брауэр пытался прямо перестроить основные разделы математики, при этом он, в частности, раньше, чем это было сделано классическими средствами, установил важный результат (теорема о веерах или лемма Кёнига): дерево с конечным ветвлением и конечными путями конечно. Перестройка математики, осуществлявшаяся Брауэром, отличалась максимальной осторожностью при соблюдении принципов конструктивности. Он стремился спасти все, что можно было спасти. Примеры гораздо более жестких подходов продемонстрировали Р. Л. Гудстейн и Н. А. Шанин.

Наиболее интересны следующие результаты Брауэра. Операторы над последовательностями выбора должны использовать конечное число значений последовательности для получения конечной выходной информации. На основе этого он доказал непрерывность интуиционистски определимых функций действительной переменной. Брауэр показал, что на самом деле в разных областях математики использовались разные понятия функции действительной переменной, в частности, что измеримые функции не стоит для конструктивных целей трактовать как операторы над действительными числами.

Сразу же после формализации интуиционистской логики многие математики начали развивать вариации интуиционизма, либо еще сильнее ограничивая логику, либо еще сильнее ограничивая объекты. Йохансон предложил использовать в качестве основы для интуиционизма минимальную логику, но оказалось, что в любой теории, содержащей натуральные числа, интуиционистское отрицание определимо, и переход к минимальной логике ничего нового не дает. Д. Грис предложил рассматривать безотрицательную математику, в которой запрещены пустые понятия типа квадратного круга. Продвижение в данном направлении идет весьма медленно из-за необычности и трудности возникающих конструкций.

Новый импульс исследованиям в области интуиционистских понятий дали интерпретация интуиционистской логики Колмогоровым и ее (логики) формализация А Рейтингом. На этой основе и на основе точного понятия алгоритма (см. алгоритм) С. К. Клина (1945) дал первую точную классическую модель неклассической математики: понятие реализуемости. В интерпретации Клини стало возможным формально выразить тезис Чёрча как схему аксиом.

А. А. Марков (1947) и советская школа конструктивизма развили вариант математики, последовательно проводящий идею о том, что нет ничего, кроме конструктивных объектов, а алгоритмы отождествляются с их программами. Он ввел «принцип Маркова», явно разделивший обоснования и построения, разница между которыми с самого начала ощущалась в интуиционизме. Содержательно принцип Маркова гласит, что для обоснования уже проделанных построений можно пользоваться классической логикой (это показал Н. А. Шанин, построив алгоритм конструктивной расшифровки, разбивающий любую формулу на явное построение и классическое обоснование данного построения). Польская школа пошла по другому пути, ограничиваясь конструктивными объектами, но сохраняя классическую логику

Реализуемость выявила, что интуиционистские теории могут расходиться с классическими. Напр., еслиДх) — неразрешимое свойство натуральных чисел, то конструктивно верна формула - \/х(А{х} \~}А(х)).



==137



Каталог: sites -> default -> files
files -> Валявский Андрей Как понять ребенка
files -> Народная художественная культура. Профиль Теория и история народной художественной культуры
files -> Отчет о научно-исследовательской работе за 2014 год ростов-на-Дону 2014
files -> Учебно-методический комплекс дисциплины философия для образовательной программы по направлениям юридического факультета: Курс 1
files -> Цветков Андрей Владимирович, кандидат психологических наук, доцент кафедры клинической психологии программа
files -> Программа итогового (государственного) комплексного междисциплинарного экзамена по направлению 521000 (030300. 62) «Психология»


Поделитесь с Вашими друзьями:
1   ...   80   81   82   83   84   85   86   87   ...   393


База данных защищена авторским правом ©znate.ru 2019
обратиться к администрации

    Главная страница