Энциклопедия в четырех томах научно-редакционный совет



страница70/393
Дата11.03.2018
Размер9.68 Mb.
1   ...   66   67   68   69   70   71   72   73   ...   393
ИНДУКТИВНАЯ ЛОГИКА — раздел логики, в котором изучается индукция. Индукция как познавательная процедура, приводящая к обобщению в результате обнаружения сходства наблюдаемых предметов, в современной логике может быть формализована различными средствами, образуя соответствующие варианты индуктивной логики. Вариант формализации индукции, предложенный Р. Карнапом, основан на интерпретации вероятности как логического отношения между двумя высказывания. Это отношение выражает степень подтверждения гипотезы h эмпирическими данными е, обычно понимаемыми как констатация результатов наблюдений. Р. Карнап отличает понятие логической вероятности от эмпирической вероятности, изучаемой в теории вероятностей и математической статистике. Он использует язык логика предикатов первого порядка и «описания состояний» (модели), с помощью которых он вводит числовую функцию меры от, областью значений которой является закрытый числовой промежуток между 0 и 1. Сумма значений от-функции на «описаниях состояния» равна 1; от-функция логически ложных высказываний равна 0, а от-функция логически истинных высказываний равна 1. Высказывания, не являющиеся ни логически истинными, ни логически ложными, имеют значение от-функции, заключенное между 0 и 1. Степень подтверждения гипотезы h данными наблюдения е определяется как отношение значения от-функции для конъюнкции h не к значению от-функции для е.

В индуктивной логике Р. Карнапа был получен пессимистический результат: индуктивная вероятность высказываний с квантором общности (т. е. индуктивных обобщений) равна нулю. Я. Хинтикка, используя созданный им формальный аппарат, показал, что в его версии индуктивной логики карнаповский результат об индуктивных обобщениях не имеет места.

Г. Рейхенбах развил концепцию индуктивной логики как бесконечнозначной вероятностной логики. Он в качестве исходной связки использовал импликацию вида «если «о» истинно, то «bs> вероятно со степенью р». В вероятностной логике Г. Рейхенбаха истинностные значения понимаются как степени истинности, интерпретируемые как вероятности.

Новым направлением в индуктивной логике является автоматическое порождение гипотез. Целью исследований в этом направлении является формализация средств извлечения за-




==117


ИНДУКЦИЯ


кономерностей из эмпирического материала, представленного в базах данных компьютерных систем.

Схема индуктивного вывода в теориях автоматического порождения гипотез состоит в следующем: посылками вывода являются теоретические допущения и эмпирические утверждения, а следствием - теоретические утверждения, являющиеся идукгивными обобщениями. Оригинальная теория автоматического порождения гипотез (GUHA-метод) была предложена чешскими математиками П. Гаеком и Т. Гавранеком.

Известные методы обнаружения причинно-следственных зависимостей, предложенные Д. С. Миллем, оказались идейным импульсом для развития теории правдоподобных рассуждений типа ДСМ. Эта теория была реализована в интеллектуальных системах типа ДСМ, в которых формализован синтез познавательных процедур, представляющий взаимодействие индукции, аналогии и абдукции. Правдоподобные рассуждения этого типа формализуются посредством бесконечнозначной логики с кванторами по кортежам переменной длины. Истинностные значения этой логики конструктивно порождаются посредством правил вывода первого и второго рода и приписываются автоматически обнаруженным гипотезам. Сначала посредством правил первого рода порождаются гипотезы о причинах, представляющих обнаруженное сходство в эмпирических данных. Гипотезы о причинах затем используются в правилах второго рода для вывода по аналогии, посредством которого формируется индуктивное обобщение. Критерием принятия порожденных гипотез является абдуктивный вывод, с помощью которого объясняется исходное состояние базы данных.

Важной проблемой индуктивной логики является формирование критерия принятия гипотез. Существуют различные формализации критерия принятия гипотез, использующие, в частности, степень подтверждения гипотез или абдукцию, объясняющую исходное множество фактов.

Понятия и процедуры индуктивной логики являются весьма полезными для применений в прикладных системах машинного обучения.

Лит.: Сатар R. The Logical Foundations of Probability. Chic., 1952; Idem. The Continuum of Inductive Methods. Chic., 1952; HintikkaJ. ATwoDemensional Continuum of Inductive Methods.— Aspects of Inductive Logic. Amst., 1966; Reichenbach H., The Theory of Probability. Berkeley and Los Angeles, 1949; Кайберг Г. Вероятность и индуктивная логика. М., 1978; Гаек П., Гавранек Т. Автоматическое образование гипотез. М., 1984; Кузнецов С. О. ДСМ-метод как система автоматического обучения.— В кн.: Итоги науки и техники, серия «Информатика», т. 15, М.: 1991; Финн В. К. Синтез познавательных процедур и проблема индукции.— Научно-техническая информация, сер. 2, п. 1—2, 1998,с.6-51.

В. К. Финн

ИНДУКЦИЯ — познавательная процедура, посредством которой из сравнения наличных фактов выводится обобщающее их утверждение.

Идея индукции обсуждалась Сократом и Аристотелем, который в «Аналитиках» рассматривал индуктивные рассуждения как вспомогательные средства обоснования посылок силлогизмов.

Систематическое изучение индуктивных процедур начал Ф. Бэкон, предложив таблицы присутствия и отсутствия изучаемых явлений. Он рассматривал индукцию как единственно научный способ познания, противопоставляя ее умозрительным рассуждениям.
Теория индуктивных рассуждений, наследующая идеи Ф. Бэкона об индукции, была развита Д. С. Миллем. Последний предложил пять методов индуктивных рассуждений, посредством которых выводятся заключения о причинных связях между явлениями (методы сходства, различия, объединенный метод сходства и различия, метод остатков и метод сопутствующих изменений). Индуктивные методы Д. С. Милля являются примерами правдоподобных рассуждений. Эти методы получили ряд уточнений средствами современной логики (Г. фон Вршт, Г. Гриневский, В. Финн и др.).

Признание индукции в качестве решающей познавательной процедуры характеризует теорию познания эмпиризма. Однако признание существования индукции как познавательной процедуры не влечет за собой признание возможности обосновать индуктивные обобщения. ТакД Юм развил скептический взгляд на индукцию, считая, что индуктивные обобщения не могут быть обоснованы и являются лишь результатом ассоциации идей.

Юмовский скептицизм был усилен К. Р. Поппером, который считал, что правила индуктивного вывода не могут быть сформулированы, а реальными познавательными процедурами являются лишь фальсификация гипотез, метод проб и ошибок, и, конечно, дедуктивное доказательство. Индукция же, согласно Попперу, не может быть обоснована и не имеет познавательного значения.

Теории индукции, основанные на вероятностном подходе, были развиты Г. Рейхенбахом и Р. Карнапом. В современных исследованиях по искусственному интеллекту, в которых имитируются и усиливаются посредством компьютерных систем некоторые аспекты интеллектуальной деятельности, формализация индукции осуществляется средствами современной логики, алгоритмических языков и баз данных с неполной информацией. Одним из интересных приложений идеи индукции является индуктивный синтез программ.

Следует отметить, что индукция в интеллектуальных компьютерных системах представима во взаимодействии с другими познавательными процедурами — аналогией и абдукцией. Естественная связь индукции и абдукции была отмечена Ч. С. Пирсом.

Лиг.: Котарбчньский Т. Избр. произв. Лекции по истории логики, М., 1963;4>мстк»яеЯ|.Соч.,т.2.М„ 1978; Кайберг Г. Вероятность и индуктивная логика. М., 1978; Гаек П., Гавранек Т. Автоматическое образование гипотез. М., 1984; МиллъД. С. Система логики силлогистической и индуктивной. М., 1900; Финн В. К. Синтез познавательных процедур и проблема индукции.— Научно-техническая информация, сер. 2, 1998; Reichenbach H. The Theory of Probability. Berkley and Los Angeles, 1949; Сатар R. The Logical Foundations of Probability, 2 ed. Chic., 1957; Popper К. R. Object Knowledge. An Evolutionary Approach. xf., 1974.

В. К. Финн


Каталог: sites -> default -> files
files -> Валявский Андрей Как понять ребенка
files -> Народная художественная культура. Профиль Теория и история народной художественной культуры
files -> Отчет о научно-исследовательской работе за 2014 год ростов-на-Дону 2014
files -> Учебно-методический комплекс дисциплины философия для образовательной программы по направлениям юридического факультета: Курс 1
files -> Цветков Андрей Владимирович, кандидат психологических наук, доцент кафедры клинической психологии программа
files -> Программа итогового (государственного) комплексного междисциплинарного экзамена по направлению 521000 (030300. 62) «Психология»


Поделитесь с Вашими друзьями:
1   ...   66   67   68   69   70   71   72   73   ...   393


База данных защищена авторским правом ©znate.ru 2019
обратиться к администрации

    Главная страница