Энциклопедия в четырех томах научно-редакционный совет



страница362/393
Дата11.03.2018
Размер9.68 Mb.
1   ...   358   359   360   361   362   363   364   365   ...   393
МОДАЛЬНАЯ ЛОГИКА — область логики, в которой изучаются логические операторы, называемые модальностями. В качестве стандартных обычно используются (алетические) модальности: «необходимость» и «возможность».

Первые исследования в области модальной логики принадлежат Аристотелю, который наряду с ассерторическими силлогизмами ввел в обращение модальные силлогизмы, в которых хотя бы одна из посылок является высказыванием типа «А необходимо принадлежит В», «А возможно принадлежит В». При этом необходимое Аристотель не считал возможным. Следующий шаг в развитии модальной логики сделал ученик Аристотеля Теофраст, который стал относить модальность к высказываниям в целом, а не к отдельным понятиям. Кроме того, он принял тезис: все необходимое возможно, что открыло дорогу к определению возможности через необходимость: «возможно А» эквивалентно «не необходимо не-А». В средние века произошло разделение модальностей на модальности de dicto (о речи), относящиеся к высказыванию в целом, и модальности de re (о вещи), относящиеся к свойствам. Современные исследования модальной логики связаны во многом с именем К. Льюиса, построившего исчисления SI — S6. Характерным примером могут служить его исчисления S4 и S5 (в трактовке К. Геделя). Эти исчисления строятся как расширения классической логики высказываний и классической логики предикатов. Язык логики пополняется модальным оператором О (необходимо), действующим на предложения языка. Оператор возможности 0 вводится как сокращение для -i D -ι. Определение формулы пополняется пунктом: если А — формула, то π А — тоже формула.

Аксиоматику пропозиционального модального исчисления получаем, добавляя к аксиомным схемам и правилам вывода классической логики высказываний модальную схему аксиом D(A э В) => (QA => DB) и правило вывода: «если доказуемо А => В, то доказуемо DA=> DB» (правило С). Это пропозициональное модальное исчисление С2. Заменив правило С более сильным правилом вывода: «доказуемо А —> доказуемо DA» (правило Гёделя) и добавив к С2 одну из аксиомных схем ОАзА, ОАз DDA, -ОАз D—.DA, получаем пропозициональные модальные исчисления Т, S4 и S5 соответственно. С этими исчислениями не возникает никаких принципиальных проблем.

Совершенно иная ситуация возникает, если эти «модальные приставки» добавлять к классической логике предикатов, поскольку в предикатных модальных контекстах может нарушаться закон подстановочности тождественных VxVy(x = у =) (F(x) => F(y)). К примеру (пример Куайна), утверждение «необходимо, что 9 больше 7» и его экзистенциальное обобщение «Зх такой, что необходимо, что χ больше 7» верно, если χ есть 9 и 9 есть натуральное число, но неверно, если χ есть 9 и 9 есть число планет.

Согласно Куайну, вхождение переменной χ в открытую формулу «необходимо, что χ больше 7» референциально неясно, поскольку нельзя гарантировать, что, будучи связанной, переменная χ именует в точности один объект. Поэтому модальная логика предикатов требует некоторого изменения принципов, на которых построена немодальная стандартная теория квантификации.

В частности, экзистенциальное обобщение в модальных контекстах должно основываться на следующем правиле: Э-квантификация открытого предложения справедлива, если, и только если, имеется замкнутый терм, подстановка которого на место переменной квантификации приводит к истинному предложению. Соответственно подстановочность тождествен

ного имеет место, если, и только если, взаимозаменяемые термины являются синонимами.

Принятие такого принципа в теории квантификации ведет к т. н. подстановочной интерпретации кванторов, в отличие от стандартной, или объектной, их интерпретации. В стандартной интерпретации значениями связанных переменных являются объекты универсума, в подстановочной — термины языка. Подстановочная теория ничего не говорит о существовании или несуществовании объектов; она исследует лишь определенные отношения между утверждениями языка. Все истины теорий подстановочного типа являются в общем случае лингвистическими, и их использование для описания конкретных ситуаций требует дополнительных допущений о характере универсума (множестве объектов, допустимых в данной ситуации). Еще один способ обоснования квантификации в модальных контекстах основан на допущении, согласно которому значениями связанных переменных в модальных контекстах являются не объекты и не термины, а смыслы, т. е. определенные способы понимания объектов. При этом одному и тому же объекту могут соответствовать различные смыслы (подробнее см.: Именования теория. Экстенсиональность).

С учетом этих разъяснений становится понятным, что, хотя чисто технически нет никаких препятствий к построению предикатных модальных исчислений С2, Т, S4, S5 посредством указанных выше «модальных приставок», в этих исчислениях (за исключением S5) нельзя гарантировать безусловного выполнения принципа подстановочности тождественного. Поэтому поступают следующим образом: помимо предикатных исчислений С2, Т, S4 строятся исчисления ВС2, ВТ, BS4, которые отличаются от С2, Т, S4 введением дополнительной аксиомной схемы, известной как формула Баркан: VxDA(x) з DVxA(x) (в S5 эта формула является теоремой). Принцип подстановочности тождественного строго выполняется в ВС2, ВТ, BS4, S5. В модальных предикатных исчислениях с равенством («модальная приставка» присоединяется в этом случае к классическому исчислению предикатов с равенством) для обеспечения подстановочности тождественного должно выполняться условие VxVy(x = у => D(x = y)).

Содержательные трудности возникают и в связи с самой «модальной приставкой». Исчисления с правилом Геделя и аксиомной схемой DA э А называются нормальными, т. е. соответствующими содержательным стандартам логической необходимости: всякая теорема логически необходима (логически истинна) и всякое необходимо истинное утверждение истинно. Все остальные исчисления не считаются нормальными, и для них отдельно должны быть указаны смыслы, в каких они используют операторы необходимости и возможности. Вот некоторые возможные смыслы этих операторов, отличные от указанного выше «алетического» смысла α и 0.1) π означает доказуемость, а 0 — непротиворечивость (интуиционистские модальности, не исключающие, впрочем, существования специальной логики доказуемости); 2) D означает обязательность в смысле необходимости соблюдения норм, а 0 — позволение, или отсутствие запрещения (деонтические модальности); 3) D означает приемлемость эмпирической гипотезы, а 0 — ее неотвергаемость (индуктивные модальности); 4) О означает «везде» или «всегда», а 0 — «кое-где» или «иногда» (пространственно-временные модальности); 5) α означает «знаю, что», а 0 — «не знаю не» (элистемические модальности). Существенно, что этот список потенциально неограничен (т. е. он ограничен только нашей изобретательностью, а не существом дела).




==593


МОДЕЛЕЙ ТЕОРИЯ


Синтаксические характеристики операторов о и 0 во всех этих случаях должны быть различными. Напр., для деонтических модальностей не проходит аксиомная схема пАэ А, поскольку нормы могут быть нарушены. Вместо нее должна использоваться аксиомная схема ПА э -ι π -А (обязательная норма допустима).

Для всех этих и многих других модальных исчислений остро встала проблема их формальной интерпретации: построение адекватной им формальной семантики, в которой: 1) каждая формула исчисления является либо истинной, либо ложной; 2) каждая доказуемая формула истинна (непротиворечивость исчисления); 3) каждая истинная формула доказуема (полнота исчисления); 4) установлена тесная связь с содержательной семантикой.

Первый шаг был сделан Р. Карнапом. Используя идеи Лейбница, он строит семантику на основе множества описаний состояния (положений дел, характеризуемых средствами языка, или «возможных миров»). Высказывание «А возможно» семантически характеризуется им как «А истинно хотя бы в одном описании состояния (возможном мире)» и высказывание «А необходимо» как «А истинно во всех описаниях состояния (возможных мирах)».

Следующий шаг связан с именем С. Крипке. Он отказался от обязательного представления возможного мира в виде описания состояния, зависящего от структуры логического языка. Такое представление сохраняется только в канонических моделях (максимально непротиворечивых множествах), тогда как в общем случае возможный мир — это просто элемент произвольного непустого множества (возможных миров). При этом допускается возможность существования изолированных элементов такого множества (элементов, не связанных ни с какими другими элементами множества).

Для формального выражения этой идеи Крипке вводит отношение достижимости — некоторое бинарное отношение R, определимое на множестве возможных миров. Пусть а и b — возможные миры. Тогда, если имеет место а R Ь, то эти миры связаны: из мира а можно достичь мира b. В противном случае это оказывается невозможным. Формальные семантики для различных исчислений различаются теперь только свойствами отношения R. Так, чтобы получить адекватную семантику для S4, достаточно предположить, что отношение R рефлексивно и транзитивно. Если дополнительно предположить симметричность этого отношения, то получим адекватную семантику для S5. В этом последнем случае каждый возможный мир достижим из каждого, и надобность в специальном отношении достижимости отпадает. Предложенная Карнапом формальная модальная семантика соответствует этому частному случаю и годится, следовательно, только для S5.

Далее, для каждой предикатной модели каждый мир w из множества возможных миров W, на котором определено бинарное отношение достижимости R, характеризуется непустым множеством D индивидов, существующих в этом мире. Существует также выделенный элемент w*, называемый действительным миром. Для разных w множества D^ могут быть разными.

С этой точки зрения понятно, почему принцип подстановочности тождественного и экзистенциальное обобщение требуют ограничений в модальных контекстах. Если индивидные константы или переменные находятся в сфере действия модального оператора, то они могут обозначать один и тот же индивид в действительном (выделенном) мире, но различные индивиды в других возможных мирах (а в каких-то ми

рах ничего не обозначать). Поэтому, чтобы указанные принципы были применимыми в модальных контекстах, каждый входящий в этот контекст индивидный символ должен обозначать один и тот же объект во всех мирах, связанных с данным миром отношением R.

Быстрый рост числа модальных исчислений в 70—80-е гг. поставил вопрос о создании более общей и более богатой по своим возможностям формальной семантики, чем семантика Крипке. Один из путей создания такой семантики связан с именем 3. Стахняка. Его основная идея элегантна и проста, хотя ее реализация технически может быть очень сложной. Семантика Крипке является теоретико-множественной. Каждый «возможный мир» есть просто лишенный внутренней структуры элемент некоторого множества, которому (элементу) в предикатных интерпретациях приписано еще одно множество — множество индивидов, допустимых в этом мире. Вся ее изобразительная сила определяется поэтому только свойствами отношения R. Если удастся наделить и сами элементы внутренней структурой, то изобразительная мощь формальной семантики резко возрастет.

Для реализации этой идеи Стахняк использовал сочетание алгебраических и теоретико-множественных подходов. На исходном множестве, рассматриваемом в качестве алгебраического объекта, можно построить вторичное множество алгебраических структур (напр., ультрафильтров). На новом множестве процесс можно повторить, получая множество элементов с более богатой структурой, а затем построить на нем отношение достижимости R. Тем самым мы получаем семантику возможных миров, в которой в отличие от семантики Крипке элементы базисного множества могут быть наделены сколь угодно сложной внутренней структурой.

Такого рода формальная семантика обладает огромной изобразительной силой. Ее можно использовать не только для интерпретации существующих модальных исчислений, но и для построения новых модальных исчислений, обладающих наперед заданными желательными семантическими свойствами. Фактически впервые появилась возможность того, что современная формальная логика может быть использована не только и даже не столько в качестве преимущественного средства для построения оснований математики, как это повелось со времен Д. Гильберта, сколько в качестве метода построения оснований любого вида научного знания, в том числе философского.

Лт.·.·СаЬЬау D. M. Investigations in Modal and Tense Logics with applications to problems in Philosophy and linguistics. N. Y, 1976; ЛеммонЕ. Алгебраическая семантика для модальных логик I. II.— В кн.: Семантика модальных и интенсиональных логик. M., 1981; Костюк В. Н. Элементы модальной логики. К., 1976; Крипке С. Семантический анализ модальной логики.— В кн.: Фейс Р. Модальная логика. M., 1974; Stachniak Z. Introduction to model theory for Lesniewski's Ontology. Wroclaw, 1981; Hughes G. E. and Cresswell M. J. A Compation t Modal Logic" Methuen — London, 1984; Van Benthem J. A. F. K. Modal and Classical Logic. Napoli, 1983; Zeman J. J. Modal Logic. The LewisModal Systems. Oxf., 1973; Segerberg K. An essay in classical modal logic.- «Filosofiska Studier», Uppsala, 1971, N 13; ChagrovA. V., Zakharyaschev M. Modal Logic. Oxf., 1997.

В. Н. Костюк

МОДЕЛЕЙ ТЕОРИЯ — раздел математической логики, изучающий модели формальных теорий, соотношения между моделями и теориями и преобразования моделей. Предшественниками теории моделей были Б. Больцано и Э. Шредер, осознавшие понятие выполнимости формулы на интер-




==594


МОДЕЛЕЙ ТЕОРИЯ


претации. В настоящий момент теория моделей делится на следующие разделы: Классическая теория моделей (КМТ), изучающая теоретикомножественные модели классических теорий.

Алгебраическая теория моделей (ATM), изучающая прежде всего модели неклассических логик, базирующиеся на обобщенной семантике истинностных значений.

Теория моделей Крипке (СВМ), изучающая модели неклассических логик, базирующиеся на возможных миров семантике.

Интерпретации реализуемости (ИР), моделирующие логики и теории как исчисления задач.

КМТ берет начало от работ Лёвенгейма (1915) и Скулема (1920), установивших существование моделей любой бесконечной мощности для любой непротиворечивой теории, имеющей бесконечную модель. Этот результат вначале рассматривался как парадоксальный, потому что из него следовало существование счетных моделей несчетных множеств, а мощность множества в те времена содержательно интерпретировали как число элементов, по аналогии с конечными множествами, а не как сложность его задания, как сейчас делается по аналогии с теорией алгоритмов. Фундаментальным результатом КМТ явилась теорема Геделя о полноте классической логики предикатов (первого порядка), из которой следует существование моделей у любых (основанных на этой логике) непротиворечивых теорий. В 70-е гг. выяснилось, что теорема Геделя о полноте эквивалентна аксиоме выбора множеств теории.

Если задана некоторая сигнатура (перечисление констант, функциональных символов и предикатов вместе с числом аргументов у них), то (классической) интерпретацией данной сигнатуры является непустое множество объектов — универсум интерпретации, и функция вычисления значения ζ, сопоставляющая каждой константе — элемент универсума, я-местной функции/— функционал Ü" -> U, «-местному предикату Ρ — функционал V -> {0,1}. В интерпретации естественно определяется понятие значения любого терма и любой формулы теории (точное определение истинности формулы в интерпретации было впервые дано А. Тарским). Интерпретация называется моделью теории, если в ней истинны все аксиомы теории. Еще одной формулировкой теоремы полноты Геделя является совпадение множества теорем с множеством формул, истинных в любой модели теории.

По теореме Мальцева о компактности, теория имеет модель тогда, и только тогда, когда любое конечное число ее аксиом имеет модель. Эта теорема послужила основой для построения нестандартных моделей традиционных математических объектов, таких, как действительные и натуральные числа.

В самом деле, взяв в качестве теории все истинные на стандартной модели формулы и добавив новое число ω и бесконечную совокупность аксиом ω>0,ω>1,ω >η, мы получаем, что любая конечная совокупность новых аксиом удовлетворяется на стандартной модели. Значит, есть и модель, где они все выполнены. Она сохраняет все выразимые на языке логики предикатов свойства стандартной модели, но пополнена новыми элементами.

Позитивно использовал существование нестандартных моделей А. Робинсон (1960). Он показал, что в нестандартной модели анализа можно на строгой основе возродить методы математиков 17—18 вв., использовавших бесконечно малые и бесконечно большие величины. Основополагающим явился здесь результат, что любое конечное нестандартное число
однозначно разлагается в сумму стандартного и бесконечно малого. Далее, сохранение всех выразимых свойств используется для установления принципов переноса, которые позволяют отбрасывать бесконечно малые либо доказывать общее утверждение о стандартных числах на основе рассмотрения одной бесконечно малой либо бесконечно большой величины. Но здесь приходится строго разделять формулы стандартного языка и формулы метаязыка, говорящего о нестандартной модели. В частности, утверждения, явно включающие предикат «быть (нестандартным», уже могут нарушать все свойства стандартной модели. Дальнейшее развитие нестандартного анализа привело к теории полумножеств Г. Хаека и к альтернативной теории множеств С. Вопенки, где конечные нестандартные совокупности могут включать бесконечные подклассы.

Современная КМТ развивается во многих направлениях, большинство из которых в данный момент имеют дело со сложнейшими идеальными математическими понятиями (абстрактными объектами) без выхода на общенаучные либо методологические результаты. Правда, приятным исключением является совокупность теорем, характеризующих теории частного вида через их модели. V-теория — это теория, все аксиомы которой имеют вид VJ£4(x), где χ — совокупность переменных, и А не содержит кванторов. Теорема Лося. Теория представима как V-теория тогда, и только тогда, когда каждая подсистема ее модели также является ее моделью.

Эта теорема при внешней простоте формулировки требует использования абстрактных и сложных конструкций КМТ. Таковы же и другие теоремы характеризации. В частности, совокупность систем называется многообразием, если она является множеством моделей теории с аксиомами вида ^xP(t(x)), где Р— предикат. Многообразия — это V-теории, модели которых сохраняются при гомоморфизмах. Теоремы характеризации используются в современной информатике для описания абстрактных типов данных. ATM началась с предложенной Линденбаумом и Тарским концепции, согласно которой любая теория может рассматриваться как алгебра, операциями которой являются логические связки, а объектами — классы формул, для которых доказуема эквивалентность. Такая алгебра называется алгеброй Линденбаума-Тарского (ЛТ-алгеброй) теории. ЛТ-алгебра классической теории — булева алгебра. ЛТ-алгебра интуиционистской — псевдобулева, теории в модальной логике S4 — булева алгебра с замыканиями. Данный подход был вторым основанием и инструментом для построения альтернативной теории множеств. Для неклассических логик он математически эквивалентен СВМ и поэтому в последнее время употребляется менее интенсивно. Трудностью в ATM является интерпретация кванторов. Для данной цели была развита теория цилиндрических алгебр.

Семантика возможных миров (СВМ) предлагалась уже Аристотелем, который рассматривал теорию модальных суждений. Ее предшественником можно считать Г. Лейбница, который явно ввел понятие возможного мира. В современном виде она впервые была предложена для частного случая интуиционистской логики Э. Бетам (1954) и последовательно развита для целого ряда логик С. Кринке, имя которого она и получила.

При СВМ интерпретациях имеется некоторая алгебраическая система классических (либо, в более тонких случаях, алгебраических) моделей, называемых мирами, связанных отноше-



==595


МОДЕЛИРОВАНИЕ


ниями и порою функциями. Для модальных логик СВМ интерпретации обычно используют единственное бинарное отношение достижимости.

Логика L называется шкальной, если любая интерпретация с той же системой миров, что у модели L, также является моделью L. Т. о., шкальные логики накладывают ограничения не на отдельные миры, а на их внешние взаимосвязи.

Один из интереснейших результатов современной СВМ — перечисление всех суперинтуиционистских и модальных пропозициональных логик, обладающих интерполяционным свойством Крейга: для любой доказуемой импликации А =» В найдется формула С, содержащая лишь термины, общие для А и В, такая, что доказуемы А=>СиС=»В.В работах Л. Л. Максимовой показано, что логик, обладающих свойством Крейга, конечное число.

Математическая структура вынуждения, использованная П. Дж. Козном как промежуточный шаг для построения нестандартных классических моделей теоретико-множественных систем, позднее получила название моделей Крипке для интуиционистской логики. С их помощью решена проблема 1ильберта: доказана независимость аксиомы выбора и континуум-гипотезы. Далее, теми же методами установлена невозможность явного построения, в частности, неизмеримого множества действительных чисел и нестандартной модели анализа. Исторически это было одно из первых использований СВМ. Последний класс моделей — ИР. Колмогоровская интерпретация допускает значительную гибкость в классе используемых функционалов, поэтому в ИР используются и алгоритмы, и топологические пространства с непрерывными преобразованиями, и категории, и формальные выводы, и комбинации данных объектов.

Наиболее значительные в методологических аспектах результаты, полученные при помощи ИР за последнее время, следующие. Доказана совместимость с интуиционистской математикой моделей брауэровских концепций творящего субъекта и беззаконных последовательностей (см. Интуиционизм) и построены модели вычислимости, основанные на данных концепциях. Т. о., обосновано, что содержательный вычислительный метод может быть представлен как композиция алгоритма, творческого процесса и физических измерений. Доказано, что для многих аксиоматических систем добавление аксиомы выбора к конструктивному анализу и к теории множеств с интуиционистской логикой не нарушает эффективности доказательств. Т. о., аксиома выбора на самом деле не приводит сама по себе к чистым теоремам существования; в данном смысле она концептуально противоречит исключенного третьего закону, который с необходимостью приводит к таким теоремам.

Лит.: Кейслер Г., Чэн Ч. Ч. Теория моделей. М., 1977; Максимова Л. Л. Интерполяционные свойства суперинтуиционистских, модальных и позитивных логик.— В кн.: Модальные и интенсиональные логики и их применение к проблемам методологии науки. М., Наука, 1984.



H. H. Непейвода

МОДЕЛИРОВАНИЕ — представление процесса или ситуации с помощью модели. Применяется для исследования и/или управления. Процедуры моделирования используются как в чисто теоретических (математика, логика), так и в прикладных сферах. Можно выделить два типа моделирования, основанные на двух различных определениях модели.

В первом случае модель — это конструкция, изоморфная моделируемой системе. При таком моделировании каждому объ

екту системы ставится в соответствие определенный элемент моделирующей конструкции, а свойствам и отношениям объектов соответствуют свойства и отношения элементов. Классическими примерами моделей, основанных на изоморфизме, являются модели аксиоматических систем в математике. Они задают семантику формальных построений и создают возможность для содержательной интерпретации аксиом. Сами аксиомы, как и следствия из них, считаются предложениями некоторого формального языка. Кроме того, задана область интерпретаций, представляющая собой множество индивидных объектов. Изоморфизм задается функцией, сопоставляющей каждому имени языка некоторый объект из заданного множества, а каждому выражению языка некоторое отношение объектов этого же множества. Если любое высказывание, которое выведено из аксиом, истинно в области интерпретаций (т. е. соответствует реальным отношениям объектов), то эта область называется моделью системы аксиом. Моделирование в математике используется, напр., для доказательства непротиворечивости формальных систем. Так была, в частности, доказана непротиворечивость неевклидовых геометрий. При рассмотрении систем Лобачевского и Римана, как формально построенных аксиоматик, можно найти для каждой из них такое множество объектов в евклидовом пространстве, для которого существует описанное выше соответствие между этим множеством и системой аксиом. Поэтому геометрии Лобачевского и Римана непротиворечивы, если, конечно, непротиворечива евклидова геометрия.

Этот тип моделирования используется не только в чистой математике, но также при математическом описании природных, общественных, технологических и т. п. систем. Смысл такого описания состоит в том, что отношения между элементами системы выражаются с помощью уравнений, причем так, чтобы каждому термину содержательного описания системы соответствовала какая-либо величина (константа или переменная) или функция, фигурирующая в уравнении. Сами уравнения называются при этом моделью. Чаще всего математическое моделирование требует абстракции, т. е. отвлечения от некоторых свойств и отношений в моделируемой системе. Это позволяет достичь общности модели и утверждать, что она, игнорируя частности, описывает достаточно широкий круг процессов или систем. К тому же без таких упрощений моделирование оказывается бессмысленным (из-за чрезмерной сложности модели) или вообще невозможным. Другим важным гносеологическим условием моделирования является измеримость всех описываемых объектов и отношений. Чтобы построить модель, необходимо найти их числовое представление. Всякий моделируемый процесс должен быть полностью охарактеризован с помощью параметров, поддающихся измерению.

Второй тип моделирования основан на понятии «черный ящик». Этим термином называют в кибернетике объект, внутренняя структура которого недоступна для наблюдения и о котором можно судить только по его внешнему поведению, в частности по тому, как он преобразует приходящие на вход сигналы. Если некоторая система слишком сложна, то нет смысла искать ее математическое описание. Проще попытаться построить вместо нее другую систему, которая при заданных условиях будет вести себя точно так же. Такое моделирование часто используется при исследовании отдельных систем живых организмов с помощью компьютерной симуляции. Описать работу живого организма уравнениями крайне тяжело. Но возможно построить компью-



==596


МОДЕРНИЗАЦИЯ СОЦИАЛЬНАЯ


терную схему, которая при подаче на вход определенного стимула давала бы на выходе реакцию, тождественную или близкую к реакции моделируемой системы. Если спектр совпадающих входных и выходных процессов достаточно широк, то можно ожидать, что построенная схема точно воспроизводит исследуемый объект.

Лит.: Эшби У. Р. Введение в кибернетику. М., 1959; ГастевЮ. А. Гомоморфизмы и модели. Логико-алгебраические аспекты моделирования. М., 1975; Кузин Л. Т. Основы кибернетики. В 2-х т. М., 1979; Бу.юсДж., Джефри Р. Вычислимость и логика. М., 1994.

Г. Б. Гутнер

МОДЕРАТ (Μοδέρατος) из Гадеса (финикийское поселение в Испании) (2-я пол. I в. н. э.) — философ-пифагореец, автор сочинения «Пифагорейские учения» в 10/11 книгах, которое используется Порфирием в сочинениях «Жизнь Пифагора» (48-53) и «О материи» (ср.: Simpl. In Phys., p. 230, 34 ff. Diels). Сводка мнений Модерата о душе дается Ямвлихом (De Anima, ар. Stob. Anth. 1364). Приписываемые Модерату рассуждения о числе (Stob. Anth. I р. 21 Wachsm.) сходны с пассажами из Теона Смирнского (р. 18, 3 ff. Hiller). На основании интерпретации сохранившихся фрагментов можно предположить (Долдс), что Модерат в ходе толкования платоновского «Парменида» предвосхитил ряд основных инноваций Плотина (сверхбытийное Единое, а также — на примере числа — описание процесса разворачивания единства во множество и обратно) или же во всяком случае что существовала традиция, для которой был характерен отказ от среднеплатонического отождествления единого с нусом и которая могла оказать влияние на Плотина (или Аммония).

Лит.: Dodds E. R. The «Parmenides» of Plato and the Origin of the Neoplatonic «One».- «Classical Quarterly» 22, 1928, p. 129-142; WhittakerJ. Epekeina nou kai ousias.— «Vigiliae Christianae» 23, 1969, p. 91— 104; Он же. Neopytliagoreanism and Negative Theology.— «Symbolae doensis» 44, 1969, p. 109—125; Он же. Neopythagoreanism and the Transcendent Absolute.— Ibidem. 48, 1973, p. 77—86.

А. В. Пахомова


Каталог: sites -> default -> files
files -> Валявский Андрей Как понять ребенка
files -> Народная художественная культура. Профиль Теория и история народной художественной культуры
files -> Отчет о научно-исследовательской работе за 2014 год ростов-на-Дону 2014
files -> Учебно-методический комплекс дисциплины философия для образовательной программы по направлениям юридического факультета: Курс 1
files -> Цветков Андрей Владимирович, кандидат психологических наук, доцент кафедры клинической психологии программа
files -> Программа итогового (государственного) комплексного междисциплинарного экзамена по направлению 521000 (030300. 62) «Психология»


Поделитесь с Вашими друзьями:
1   ...   358   359   360   361   362   363   364   365   ...   393


База данных защищена авторским правом ©znate.ru 2019
обратиться к администрации

    Главная страница