Энциклопедия в четырех томах научно-редакционный совет



страница262/393
Дата11.03.2018
Размер9.68 Mb.
1   ...   258   259   260   261   262   263   264   265   ...   393
ЛОГИКА СИМВОЛИЧЕСКАЯ


берта (начиная с 1904), где была поставлена главная задача: найти строгое основание для математики посредством доказательства ее непротиворечивости, т. е. доказательства того факта, что в ней недоказуема никакая формула вида А вместе с формулой -А. Для этого потребовалось развить теорию доказательств (см. Доказательств теория), после чего, считал Гильберт, используя только финитные методы (см. Финитазм), можно будет доказать непротиворечивость теории множеств и самой теории действительных чисел и т. о. решить проблему оснований математики.

Однако результат К. Геделя о неполноте арифметики (1931) убедительно показал, что программа Гильберта невыполнима. Грубо говоря, эта теорема утверждает, что если теория S, содержащая арифметику, непротиворечива, то доказательство непротиворечивости теории не может быть проведено средствами самой теории S, т. е. всякое такое доказательство обязательно должно использовать невыразимые в теории S идеи и методы (вторая теорема о неполноте). Примером тому может служить доказательство непротиворечивости арифметики, предложенное Г. Тени/том (1936).

Обширным полем деятельности для современной символической логики является теория рекурсии, которая в первую очередь имеет дело с проблемой разрешимости: доказуема или нет формула А из некоторого множества посылок. Эти исследования привели к теориям вычислимости, к созданию компьютерных программ автоматического поиска доказательств. Решение проблемы разрешимости (см. Разрешения проблема) явилось основным стимулом для создания теории алгоритмов. Формулировка тезиса Чёрча—Тьюринга (см. Алгоритм), утверждающего, что понятие общерекурсивной функции является уточнением интуитивного понятия алгоритма, явилось важнейшим достижением символической логики. Только после уточнения понятия алгоритма выяснилось, что в хорошо известных разделах математики существуют алгоритмически неразрешимые проблемы.

И наконец, важное место в современной символической логике занимает теория моделей (см. Моделей теория), которая изучает фундаментальные связи между синтаксическими свойствами множеств предложений формального языка, с одной стороны, и семантическими свойствами их моделей, с другой; и вообще, изучаются соотношения между моделями и теориями, а также преобразование моделей. Зачастую модели используются как инструмент для того, чтобы показать, что некоторая формула А не может быть дедуцирована из определенного множества постулатов или, если А есть аксиома, то показать недоказуемость А из остальных аксиом системы, к которой А принадлежит (если это возможно). Тогда А является независимой аксиомой.

Совершенно очевидно, что те впечатляющие результаты, которые были получены средствами символической логики, и в первую очередь в области оснований математики, привели к некоторому пшостазированию функции и предмета самой этой логики. В предисловии к «Handbook of mathematical logic» (1977) Дж. Барвайс пишет: «Математическая логика традиционно подразделяется на четыре раздела: теория моделей, теория множеств, теория рекурсии и теория доказательств». В свою очередь в «Encyclopedia Britanica» (CD-1998), уже применительно к символической логике, четыре указанных раздела названы «четырьмя главными областями исследования». Более точно было бы говорить о применении технического аппарата логики в данных областях, поскольку теория множеств и теория рекурсии сами по себе являются самостоя

тельными математическими дисциплинами и не являются частью символической логики. Теория доказательств для некоторых математиков-логиков превратилась чуть ли не в «метаматематику» (термин Гильберта), а теория моделей давно вышла за пределы логической семантики. Развитие современной логики показывает, что термин «символическая логика» гораздо шире термина «математическая логика», где под последней понимается изучение тех типов рассуждений, которыми пользуются математики. Символизация и представление различных логических теорий в виде исчислений стало обычным делом и поэтому строго разделить современные логические исследования на относящиеся к символической логике и не относящиеся к ней порой просто невозможно (см. Неклассические логики. Философская логика).

Особенное свойство символической логики заключается в том, что она является рефлексивной наукой. Это означает, что она применяет свои методы и логические средства для анализа и понимания своей собственной структуры. В первую очередь это результаты Геделя (1930) о непротиворечивости и полноте чистой логики, т. е. логики предикатов. Поэтому последняя, являясь весьма богатой по своим выразительным средствам, и лежит в основе большинства теорий. Но средствами этой же логики доказано, что любая достаточно богатая теория, включающая всего лишь арифметику или даже часть ее, неполна, т. е. в ней есть утверждение, которое нельзя ни доказать, ни опровергнуть (первая теорема Геделя о неполноте, 1931). Более того, неполнота арифметики принципиальна, т. е. подобные теории нельзя пополнить, чтобы доказать их непротиворечивость. Итог этой рефлексии сокрушителен! Поставлен вопрос о самом статусе математики: может ли она основываться на глубоко скрытых противоречиях?

Но более того, рефлексия чистой логики над собой достигла к концу 20 в. критической точки и поставила вопрос о статусе уже самой логики, вопрос о том, что такое логика? Дело в том, что в отличие от математики рефлексия чистой логики континуально размножилась. Сейчас мы имеем континуумы различных классов неклассических логик. О единстве символической логики не может быть и речи, столь удивительными и неожиданными свойствами и моделями обладают некоторые представители неклассических логик (см., напр.. Интуиционистская логика, Многозначные логики, Паранепроти«оречивая логика). Происходит структурализация исходных понятий логики и семантики, а именно структурализация самих истинностных значений и точек соотнесения в возможныхмиров семантике в виде различных алгебраических структур. Что приписывается высказыванию? Чем является высказывание? Что собой представляют логические операции над этими высказываниями? Это становится все большей проблемой. Возникает вопрос об иерархии, взаимоотношениях и классификации всех этих логик (что сделать невозможно) или хотя бы их определенных классов. Становится все более ясным, что компьютеры, в основе которых лежит классическая логика, какой бы мощностью они не обладали, никогда не приблизятся к логике человека, создавшего эти компьютеры. Все эти проблемы уже принадлежат 21 веку. В 1936 создана Международная Ассоциация Символической Логики. В том же году начал издаваться самый известный журнал по логике: «The Journal of Symbolic Logic».



Лит.: Математическая логика (Адян С. И.).— В кн.: Математическая энциклопедия, т. 3. M., 1912; Гильберт Д., Бернайс П. Основания математики. Логические исчисления и формализация арифметики: М., 1979; Они же. Основания математики. Теория доказательств. М., 1982;


К оглавлению

==430




логицизм


Ершов Ю. Л., Палютин Е.А. Математическая логика. М., 1979; Клики С. К. Введение в метаматематику. М.. 1957; Колмогоров A. ff., ДрагашнА. Г. Введение в математическую логику. М., 1982; Колмогоров А. //., ДрагалинА. Г. Математическая логика. Дополнительные главы. М., 1984: Марков А. А. Элементы математической логики. М., 1984: Мендельсон Э. Введение в математическую логику, 3-е изд. М., 1984: Непеивода H. H. Прикладная логика. Ижевск, 1997; Новиков П. С. Элементы математической логики, 2-е изд. М., 1973; Справочная книга по математической логике, т. 1—4. М., 1982—83; ЧёрчА. Виедение в математическую логику, т. 1. М„ 1960; BochenskiJ. A history of formal logic, 2d. ed. Chelsea, 1970; Church A. A bibliography of symbolic logic. Providence, 1938; Copi 1. М. Symbolic logic, 5th ed. Prentice Hall, 1979: From Dedkind to Godel: Essys on the development f the foundations of mathematics, Ed. J. Hintikka. Dordrecht, 1995; Klenk V. Understanding symbolic logic, 3rd ed., 1994; MostowskiA. Thirty years of foundational studies. Oxf., 1966.

А. С. Карпенко ЛОГИКА ТРАДИЦИОННАЯ -см. Логика.


Каталог: sites -> default -> files
files -> Валявский Андрей Как понять ребенка
files -> Народная художественная культура. Профиль Теория и история народной художественной культуры
files -> Отчет о научно-исследовательской работе за 2014 год ростов-на-Дону 2014
files -> Учебно-методический комплекс дисциплины философия для образовательной программы по направлениям юридического факультета: Курс 1
files -> Цветков Андрей Владимирович, кандидат психологических наук, доцент кафедры клинической психологии программа
files -> Программа итогового (государственного) комплексного междисциплинарного экзамена по направлению 521000 (030300. 62) «Психология»


Поделитесь с Вашими друзьями:
1   ...   258   259   260   261   262   263   264   265   ...   393


База данных защищена авторским правом ©znate.ru 2019
обратиться к администрации

    Главная страница