Энциклопедия в четырех томах научно-редакционный совет


ИСКЛЮЧЕННОГО ТРЕТЬЕГО ЗАКОН



страница100/393
Дата11.03.2018
Размер9.68 Mb.
1   ...   96   97   98   99   100   101   102   103   ...   393
ИСКЛЮЧЕННОГО ТРЕТЬЕГО ЗАКОН — один ИЗ трех главных законов традиционной логики, сформулированных Аристотелем. Его оригинальная формулировка «Оба утверждения А и us-α не могут быть одновременно ложны». Но уже у самого Аристотеля в «Метафизике» встречается (не как закон, а как способ рассуждения) другая формулировка, в настоящее время более употребительная: «Одно из утверждений А или не-4 должно быть истинным» (сильный исключенного третьего закон).

Эта формулировка получила в схоластической логике название tertium non datur.

Сам Аристотель указал и границу применимости tertium non datur, рассмотрев пример высказывания: «Завтра будет морское сражение», которое сегодня не истинно и не ложно.

На языке математической логики сильный исключенного третьего закон выражается формулой A v1 A, которая часто подменяет его в современных математизированных работах и называется математическим законом исключенного третьего. Но последний не эквивалентен ни сильному исключенного третьего закону, ни аристотелеву. В частности, в алгебраической интерпретации со значениями в булевой алгебре выполнены все законы классической логики, но как А, так и ~\А могут быть неистинны. Сильный исключенного третьего закон математически означает полноту используемой теории, что практически недостижимо.


Аристотелев закон (в первой формулировке) выполняется в интуиционистской логике, a tertium non datur носит в ней статус весьма нежелательного утверждения. Одним из способов показать конструктивную неприемлемость утверждения А является доказательство tertium, исходя из А. Впервые такой метод явно сформулировал В. Крейнович.

Сильный закон исключенного третьего оказался тем критическими местом, вокруг которого развивались дискуссии в течение всего времени существования логики как науки. Стоики и эпикурейцы рассматривали логики, несовместимые с законом исключенного третьего (как правило, не замечая разницы между его сильной и Аристотелевой формулировкой). Интуиционизм начинался с утверждения о недостоверности сильного исключенного третьего закона, но он опровергает его достаточно тонко, сохраняя слабый закон исключенного третьего и придавая ему точную математическую формулировку: 11C/lv1^4), не вводя дополнительных логических значений. Эту формулировку можно назвать брауэровым исключенного третьего законом. Первое формальное доказательство этого брауэрова закона дал Гливенко (1928). Многозначные логики в значительной степени появились как результат простейшей формулировки отрицания сильного закона исключенного третьего (может быть не два значения, а несколько).

В целом критику закона исключенного третьего (в его сильной форме) можно подытожить следующим образом. Он годится для рассмотрения терминов в фиксированной обстановке с фиксированной точки зрения. Он не подходит для меняющейся обстановки и субъективных понятий. Он не допустим даже для терминов, если нас интересует не просто доказательство, а построение.

Тем не менее во всех перечисленных случаях порою его использование корректно и весьма эффективно, но требует дополнительных обоснований. Так, в элементарной классической геометрии сильный закон исключенного третьего не влечет разрушения конструктивности доказательств.



Н. Н. Непейвода


Каталог: sites -> default -> files
files -> Валявский Андрей Как понять ребенка
files -> Народная художественная культура. Профиль Теория и история народной художественной культуры
files -> Отчет о научно-исследовательской работе за 2014 год ростов-на-Дону 2014
files -> Учебно-методический комплекс дисциплины философия для образовательной программы по направлениям юридического факультета: Курс 1
files -> Цветков Андрей Владимирович, кандидат психологических наук, доцент кафедры клинической психологии программа
files -> Программа итогового (государственного) комплексного междисциплинарного экзамена по направлению 521000 (030300. 62) «Психология»


Поделитесь с Вашими друзьями:
1   ...   96   97   98   99   100   101   102   103   ...   393


База данных защищена авторским правом ©znate.ru 2019
обратиться к администрации

    Главная страница