Дёмин В. Тайны Вселенной


ЧАСТЬ 2. АРХИТЕКТУРА МИРОЗДАНИЯ



страница12/42
Дата09.03.2018
Размер0.5 Mb.
ТипРеферат
1   ...   8   9   10   11   12   13   14   15   ...   42

ЧАСТЬ 2. АРХИТЕКТУРА МИРОЗДАНИЯ


Если ты любишь смотреть на звездное небо,
Если оно привлекает тебя своей гармони
И поражает своей необъятностью -
Значит, у тебя в груди бьется живое сердце,
Значит оно сможет отзвучать на сокровенные, слова о жизни Космоса.

"Космические легенды Востока"
ГАЛАКТИКИ - ОСТРОВА В БЕСКОНЕЧНОСТИ

В прошлом астрономам мало было известно о галактиках - гигантских звездных структурах, разбросанных по всем бесконечным далям Вселенной. Далекие туманные объекты привлекли повышенное внимание лишь после изобретения телескопа.

Постепенно было открыто около 100 таких объектов, и уже в ХVIII веке был составлен первый каталог туманностей. За восемь лет до штурма Бастилии и начала Великой французской революции член Парижской академии Шарль Мессье (1730-1817) опубликовал список из 103 галактических туманностей, которые отныне получили порядковый номер рядом с первой буквой фамилии французского астронома. Среди них, конечно же, были и одни из самых прекрасных созданий природы, космических "чудес света" - спиральные галактики, олицетворением которых может служить туманность в созвездии Андромеды (М31 - по каталогу Ш. Мессье), видимая, кстати, при благоприятных условиях наблюдения невооруженным глазом - в форме небольшого размытого светящегося пятнышка. Другие (неспиральные) галактики, видимые без зрительных приборов, но только в Южном полушарии, - Большое и Малое Магеллановы облака, - были открыты во время кругосветного плавания сподвижников великого португальского мореплавателя и названы в его честь. Впоследствии оказалось, что это ближайшие к нам "звездные континенты".

Спиральная форма далеко не обязательная и тем более не доминирующая во Вселенной. Достаточно распространены, к примеру, эллиптические галактики. Чрезвычайный исследовательский интерес представляют те из галактик, которые связаны между собой перемычками ("мостами"). Существуют и небольшие - карликовые галактики (одна такая была открыта совсем недавно британскими астрономами в качестве крохотного спутника Млечного Пути). Чтобы достичь самых близких галактик, свету требуются сотни лет. Самые дальние из открытых на сегодня удалены от Земли на миллиарды световых лет.

До 20-х годов нынешнего века не было доподлинно известно, чем же на самом деле являются галактики. Бытовало мнение, что это космическое газообразное вещество, из которого формируются звезды и планеты. Мало у кого вызывало сомнение, что таинственные туманности составляют структуру однородного звездного мира. Хотя еще шведский натурфилософ и теософ-мистик Эммануил Сведенборг (1688-1772) высказывал проницательную догадку, что хорошо всем известный Млечный Путь, быть может, является гигантской "звездной сферой", одной из бесчисленных и необъятных множеств подобных сфер. В конце ХVIII века Вильям Гершель, наблюдавший туманности с помощью своего гигантского телескопа, сумел различить в них отдельные звезды. Время от времени высказывались соображения о туманностях как об объектах, находящихся за пределами гигантской звездной структуры, куда входит наше Солнце. Но к единому мнению ученые-астрономы не пришли. Не хватало достоверных фактов.

Главным виновником очередной революции в астрономии стал выдающийся американский ученый-космист Эдвин Хаббл. Америке невероятно повезло, причем вдвойне. Во-первых, в начале 1920-х годов в Маунт-Вилсонсовской обсерватории (Калифорния) вступил в строй крупнейший для того времени телескоп с диаметром зеркала 2,5 м. Он позволял делать высокоразрешающие снимки далеких объектов. Во-вторых, с этим телескопом стал работать не кто-то иной, а именно Хаббл. По полученным фотографиям он быстро установил, что все размытые пятнышки многочисленных туманностей в действительности - гигантские космические системы, состоящие из миллиардов звезд. Хаббл же предложил и первую классификацию галактик, выполненную в удобной графической форме - в виде "камертона" (рис. 56).

В ручке "камертона" находятся эллиптические галактики различных форм - от шара до линзы. По развилке располагаются спиральные галактики - по мере изменения их "орнамента".

Спиральные рукава - результат вихреобразного вращения гигантских звездных систем. Но закономерности их образования те же, что и в обычной гидродинамике. Точно так же образуются, к примеру, циклоны в атмосфере Земли и похоже они выглядят на фотографиях, сделанных со спутников из Космоса. Вихревая концепция Мироздания давно и плодотворно используется в космогонии и восходит к классическим работам Кеплера и Декарта. Впоследствии вихревую модель успешно применили Кант и Лаплас при разработке чрезвычайно популярной в свое время небулярной теории происхождения Солнечной системы. Установлено, что основную массу во Вселенной составляют спиралевидные галактики: их около 75%, эллиптических - 20%, а имеющих неправильную форму - 5 %.

Самих же галактических систем в безднах Космоса просто не счесть: чем дальше вглубь - тем все больше новых и новых галактик. Расположены они на значительном отдалении от нашей собственной Галактики - системы Млечного Пути. И главное - являются основными структурными элементами самой Вселенной.

Раздвинув границы наблюдаемой Вселенной до 500 миллионов световых лет, Хаббл насчитал в этом участке бесконечного Космоса до 100 миллионов галактик. В настоящее время счет галактик ведется на миллиарды. Число звезд в самых больших из них оценивается до 1012 -10 13 (для сравнения: количество звезд в нашей собственной Галактике - 1011). Подсчет звезд и галактик в настоящее время производится автоматически с помощью специального оборудования. Ученые обнаружили в мире галактик даже такие процессы, которые наталкивают на аналогии с миром живых явлений. Так, американский астроном Джон Гриббин привел в 1977 году фотографию, напоминающую процесс родов у животных и человека: из материнской галактики как бы извергаются галактики-эмбрионы. У других галактик, по-видимому, есть щель, сопряженная с расположенными поблизости галактиками и вращающимися вокруг "матки"*.

Хабблу принадлежит и названный его именем закон установления зависимости расстояния галактик от красного смещения в их спектрах. Впоследствии на данном основании было сделано предположение о разбегании галактик. Парадоксальность ситуации заключается в том, что сам Хаббл долгое время отрицал сам факт расширения Вселенной и отстаивал ее устойчивую модель. В главном своем труде "Мир туманностей" он писал: "Тщательное исследование возможных источников ошибок показывает, что наблюдения, по-видимому, согласуются с представлениями о нескоростной природе красных смещений <...> В теории до сих пор продолжается релятивистское расширение Вселенной, хотя наблюдения и не позволяют установить характер расширения <...> Исследование будет продолжено. Пока не исчерпаны возможности эмпирического подхода, не следует погружаться в призрачный мир умозрительных построений"**.

Хотя в представлении современного читателя Хаббл считается чуть ли не отцом концепции "Большого взрыва", сам он до конца дней своих относился подчеркнуто осторожно (и даже настороженно) к подобной "славе", предпочитая использовать по отношению к новомодной теории сослагательное наклонение, оговорки и вводные предложения и постоянно высказываясь в том смысле, что не за горами, дескать, более надежное и непарадоксальное представление о начальных и ранних этапах происхождения Вселенной. Вот что, к примеру, говорил он на лекции, прочитанной на собрании английского королевского астрономического общества за четыре месяца до смерти:

Я намерен рассмотреть закон красного смещения,- связь между расстояниями туманностей и смещениями линий в их спектрах. Это одна из двух обнаруженных характеристик той части Вселенной, которая может быть изучена и, вероятно, способна дать представление о состоянии Вселенной как целого. По этой причине важно, что закон, определяющий эмпирическую связь между данными наблюдений, был установлен вплоть до пределов, достижимых самыми крупными телескопами. Тогда с ростом точности перечень возможных интерпретаций, допускаемых неуверенностью наблюдения, может быть соответственно сокращен. Итак, когда будет достигнута окончательная формулировка [закона], свободная от систематических ошибок и с достаточно малыми случайными погрешностями, число конкурирующих интерпретаций будет сведено к минимуму.

Эдвин Хаббл. Закон красного смещения.

Красное смещение - обычное физическое явление (рис. 57), но объясняется оно вовсе не "разбеганием" источников электромагнитного излучения, а тормозящим действием сил тяготения, приводящим к уменьшению скорости света. В спектре Солнца также наблюдается красное смещение, но из этого, разумеется, не вытекает, что Солнце "убегает" от Земли. Существуют и иные объяснения факта красного смещения: 1) "старение" света, то есть потеря фотоном части своей энергии при движении в пространстве (А. А. Белопольский - Россия); 2) аннигиляция (исчезновение) вещества (Х. Альвен - Швеция); 3) зависимость массы элементарных частиц и излучения от времени (Ф. Хойл - Англия; Дж. Нарликар - Индия) и т. д. Как тут не вспомнить старый афоризм Паскаля: "Нет несчастия хуже того, когда человек начинает бояться истины, чтобы она не обличила его".

Хотя нас окружает бессчетное число галактик, человека, конечно же, в первую очередь интересует и всегда будет интересовать его собственный дом - Галактика Млечного Пути (рис. 58). Он постоянно напоминал о себе, всегда был перед глазами - во всякие эпохи и в любых концах земли. И во все времена люди задавались вопросом: что же за расчудесное явление раскинулось у них перед глазами. В одном из астрономических трактатов Аристотеля Млечному Пути посвящена отдельная глава.

Великий Стагирит приводит различные мнения относительно его происхождения, высказанные различными мыслителями - от Пифагора до современных ему ученых. Но формулирует и собственную точку зрения, исходя из науки того времени. При этом выдвигается верная в общем-то догадка, что Млечный Путь является своего рода "хвостом", наподобие кометного, но созданным не одним небесным телом, а множеством звезд.

Мы же поведем рассуждение, повторив наши исходные положения. Как уже было сказано, внешний [слой] так называемого воздуха имеет свойства огня, так что, когда движение [неба] разрежает воздух, выделяется такой состав, каким и являются, по нашему учению, кометы. Нам следует представлять себе возникновение [Млечного Пути] подобным возникновению [комет], когда такое выделение образовалось не само по себе, но под действием какой-нибудь неподвижной или блуждающей звезды. Эти [светила] кажутся тогда кометами, потому что при перемещении им сопутствует такое же образование, что и Солнцу, из-за которого, как мы утверждаем, благодаря отражению и появляется гало (когда у воздуха оказывается необходимый [для этого] состав). Следует признать, что происходящее с одной из звезд происходит и со всем небом, и со всем верхним обращением, ибо вполне разумно [предположить], что если движение одной звезды, то тем более движение всех [звезд] производит такое действие и воспламеняет [воздух], разрежая его из-за величины круга [вращения], прежде всего там, где звезды особенно часты, особенно многочисленны и велики. В круге Зодиака такой состав разрушается ходом Солнца и блуждающих звезд, именно поэтому большинство комет образуется вне тропиков. Кроме того, у Солнца и Луны хвосты, [как у комет], не образуются, ибо рассеивание [происходит] слишком быстро, чтобы такой состав успел образоваться. Между тем круг, в котором является наблюдателю Млечный Путь, - самый большой круг и расположен он так, что далеко выходит за тропики.

Добавим к этому, что эта область заполнена самыми большими и яркими звездами, а кроме того, так называемыми рассеянными звездами (они видны совершенно ясно).

Аристотель. Метеорологика

Лишь в середине нынешнего века стало ясно, что Млечный Путь - гигантский рукав скрученной в спираль огромной звездной системы, одной из множества давно известных спиральных галактик. Диаметр Млечного Пути - 100 000 световых лет.

Количество составляющих его звезд превышает 100 миллиардов (точная цифра пока не установлена). Спиралью Млечный Путь - так же, как и любая другая галактика данного типа, - предстает, естественно, только будучи повернутым к наблюдателю своим "лицом". С ребра спиральная галактика выглядит наподобие линзы - выпукло-шарообразная центральная часть и дископодобный обод (рис. 59).

Однако наша Галактика не ограничивается одними лишь звездами, образующими ее диск. Несколько процентов от общей галактической массы составляют межзвездный газ и галактическая пыль. На некотором отдалении от галактического диска разбросано множество звездных шаровых скоплений - своего рода спутников Галактики. Каждое такое скопление содержит до миллиона звезд. Наконец, сравнительно недавно выяснилось, что Галактика имеет еще и протяженную корону, которая простирается на расстояние, в несколько десятков раз превышающее диаметр диска. (Схематически это изображено на рис. 60.)

Диск Галактики вращается в виде целостности - наподобие тарелки. Угловая скорость вращения вокруг центра отдельных звезд разная. Вращение Галактики было открыто в 1925 году нидерландским астрономом Яном Хендриком Оортом (1900-1992). Он же определил и положение ее центра, находящегося в направлении созвездия Стрельца. Расстояние до него составляет приблизительно 30 000 световых лет. Изучая относительное движение звезд, Оорт установил также, что Солнце движется и вокруг центра Галактики по орбите, близкой к круговой, со скоростью 220 км/сек (современные измерения доводят эту величину до 250 км/сек). Полный оборот вокруг центра совершается примерно за 2,2.108 лет.

Подсчитано, что для создания притяжения, которое заставило бы Солнце двигаться по орбите на указанном расстоянии и с указанной скоростью, центр Галактики должен иметь массу, в 90 000 000 000 раз превосходящую массу Солнца. Если принять, что в центре Галактики сосредоточено 90% ее массы, то общая масса Галактики должна быть в 100 000 000 000 раз больше массы Солнца. Отсюда делается вывод, что именно такое количество звезд (то есть единица с 11 нулями) составляет нашу Галактику (хотя некоторые ученые называют более высокую цифру). Установлена и скорость вращения некоторых других галактик; она колеблется от 100 до 300 км/сек.

Так как мы находимся внутри собственного дома - Галактики, - нам не дано воочию увидеть ни великолепия спиральных рукавов, ни ядра, в центре которого находится таинственный источник колоссальной энергии (подсчитано, что его мощность равна 100 миллионов Солнц, хотя размеры не столь велики - примерно в пределах орбиты Юпитера). Ученые верно подметили, что наша Галактика (как, впрочем, и другие) чрезвычайно напоминает живой организм. Она обладает своего рода обменом веществ - своего рода "космическим метаболизмом".

Различные объекты Галактики и составные элементы ее иерархии находятся в состоянии непрерывного взаимодействия 31.

А что же творится вокруг нашего галактического острова? Что находится в далях бесконечности, там, куда едва достают самые мощные радиотелескопы? Еще совсем недавно ученые полагали, что галактики образуют во Вселенной достаточно однородную массу, равномерно и монотонно распределяясь в необозримом космическом пространстве. Все оказалось не так! Обнаружилось, что на самом деле галактики сбиты в комки, а между ними - зияющие пустоты. Причем комья эти образованы не отдельными галактиками, а их скоплениями, известными астрономам и раньше. По существу, вся Вселенная состоит из подобных сверхскоплений. Обычные скопления образуют сверхскопления, подобно бусинкам на нитке. Так была открыта крупномасштабная структура Вселенной - одно из значительных достижений теоретической космологии, наблюдательной астрономии и практической астрофизики в конце ХХ века 32.

Самые большие из обнаруженных на сегодня сверхскоплений напоминают длинные волокна или же сферические оболочки, состоящие из сотен и даже тысяч галактик. Самое большое из обнаруженных скоплений имеет протяженность более 1 миллиарда световых лет. Такое вытянутое галактическое волокно было открыто в области созвездий Персей и Пегас. Начинаясь вблизи Персея, оно, плавно изгибаясь, уходит в южном направлении. Здесь можно насчитать 16 структурных элементов, состоящих из галактических "кучек". Между ними равномерные зазоры длиной по 160 миллионов световых лет. Космические пустоты столь же протяженны. Так, измеренные расстояния между волокнами достигают 300 миллионов световых лет. Все это позволило космологам сравнивать структуру Вселенной с гигантской губкой или ноздрястой головкой сыра.

Интенсивное изучение галактик, в том числе и с помощью радиотелескопов, открытие фонового излучения, новых, совершенно необычных космических объектов типа квазаров привело к возникновению новых загадок и к созданию множества космологических моделей строения и происхождения Вселенной. Как же современные ученые представляют себе происхождение и эволюцию различных космических структур? Автор данной книги исходит из традиционно-классической предпосылки правильного понимания данной проблемы, подтвержденного авторитетом мирового космистского мировоззрения. Суть такого подхода в следующем. Вселенная существует вечно, пребывая, однако, в непрерывном движении, развитии, возникновении и исчезновении ее многоразличных и неисчерпаемых форм, их постоянной трансформации и взаимопереходах друг в друга. Конкретные космические объекты (конечные - в отличие от бесконечно-целостной Вселенной) постоянно эволюционируют: они рождаются, живут и умирают, но на их месте незамедлительно появляются новые. Все в мире устроено так, что если, к примеру, конкретные отдельно взятые звезды, планеты, галактики гибнут, то звезда, планета, галактика как явление природы не исчезают, и их общее невообразимо большое количество во Вселенной сохраняется.

Все космогонические старые и новые естественно-научные теории (а точнее - гипотезы) - сколь бы сложны или вычурны они ни были - крутятся вокруг двух простых слов "холодно" и "горячо". Первые утверждают, что исходный материал, из которого образовались небесные тела, был сначала холодным, а затем постепенно (или, напротив, мгновенно) разогревался. Вторые доказывают обратное: исходный материал изначально был горячим (и даже - сверхгорячим), а остывание началось после образования космических протообъектов. В первом случае мы имеем дело с так называемыми "холодными моделями", во втором - с "горячими". Но, как уже говорилось: моделей много - мир один. Весомый вклад в разработку космогонических идей внес известный советский астроном В. А. Амбарцумян (1908-1996). Его взгляды и подходы разделяют ученые разных стран. Особенно конструктивными и плодотворными астрономические и космологические наработки Амбарцумяна оказались в области галактической и внегалактической астрономии. По мнению ученого, эволюция любой галактики в очень большой степени зависит от активности и деятельности ее ядра. Эта точка зрения не считается общепринятой. Наличие ядра - распространенное свойство галактик (хотя есть галактики и без ядер). Ядра есть и в нашей Галактике, и в галактике Андромеды, и во многих других. Что они собой представляют? Ядро галактики Андромеды, например, - небольшая звездная система, диаметром около 10 световых лет. Это небольшая величина, если учитывать, что диаметры самих галактик измеряются иногда несколькими десятками тысяч световых лет. Ядра галактик - очень плотные образования, там множество звезд, и есть предположение, что ядра состоят только из звезд. Но еще в 40-х годах нашего столетия было открыто, что некоторые ядра, видимо, находятся в каком-то странном, возбужденном состоянии, там происходит движение газов со скоростью около 1 000 километров в секунду. Массы этих газов огромны, они измеряются тысячами солнечных масс, а иногда и сотнями тысяч. Каков же источник газов? Изучение радиогалактик позволило предположить, что в каждом ядре есть какое-то тело, обладающее незвездными свойствами, которое выбрасывает из себя огромные массы газов. Наконец, существуют компактные галактики. Это, по сути дела, одно ядро, и ничего больше.

Галактики, вероятно, начинают свое существование как образования неопределенной формы - типа Магеллановых облаков.

Под влиянием активности их ядер они постепенно принимают спиральную структуру. Выбрасывающиеся из ядра массы располагаются вблизи ядра вдоль магнитных силовых линий, которые затем из-за вращения галактики закручиваются и образуют спиральные ветви. Эти ветви должны беспрерывно возобновляться путем выбросов вещества из ядра, так как из-за утечки вещества вдоль магнитных силовых линий ветви могут исчезнуть через относительно короткое время в несколько сотен миллионов лет. Каким образом пополняется масса ядер, мы пока еще не знаем. Астрономы считают, что в течение существования нашей собственной Галактики (системы Млечного Пути) из ее ядра было выброшено около 10% ее общей массы, что составляет массу 20 миллионов Солнц. Такое большое уплотнение вещества в сравнительно небольшом объеме, которое имеется в ядре нашей Галактики, нигде больше не наблюдается.

В. А. Амбарцумян высказал мнение, что само ядро состоит из так называемого гиперонного газа с фантастической плотностью, а именно 1015 г/см3: один кубический сантиметр этого газа должен весить 100 000 000 тонн. На поверхности этого гиперонного ядра происходит превращение гиперонов в нейтроны, которые затем распадаются на протоны и электроны. Это приводит к наблюдаемому образова-нию межзвездного водорода в ядрах галактики. В своем дальнейшем развитии галактика продолжает сжиматься и принимает форму плоского диска, который сохраняет свою спиральную структуру. Плотность галактики повышается, и число образующихся в ней звезд увеличивается. В течение нескольких десятков миллиардов лет активность ядер в конце концов истощается, спиральная структура исчезает и галактика становится эллиптической, без признаков внутренней структуры и без сверхплотного ядра. В эллиптической галактике звезды образуются в ограниченном числе. Английские астрономы оценили возраст некоторых бесструктурных и спиралеобразных галактик по содержанию в них массы и по их яркости: одной из самых молодых галактик является Малое Магелланово облако, которое образовалось около 5 миллиардов лет тому назад, галактика М31 в созвездии Андромеды имеет возраст 35 миллиардов лет, а галактика М101 в созвездии Большой Медведицы даже 140 миллиардов лет. Наша Галактика, по мнению большинства ученых, относится к сравнительно молодым галактикам.

В ПУЧИНАХ "БОЛЬШОГО ВЗРЫВА"

Особого внимания и осмысления требует наиболее распространенная в настоящее время модель "горячей" Вселенной, сопряженная с концепцией "Большого взрыва" (рис. 61, 62). Не надо думать, что представление о расширяющейся Вселенной - открытие ХХ века. Мысли о расширяющемся Космосе высказывались еще в Ригведе и в орфико-пифагорейских космологических учениях.

В конце концов электромагнитные волны, включая свет, от любого ненаправленного и несфокусированного источника не могут быть ничем иным, кроме как расширяющейся сферой электромагнитного фронта. Космологи-релятивисты просто абсолютизировали взрывной характер данного вполне естественного процесса. К тому же релятивистские космологические модели получены исключительно умозрительным путем и усилием мысли же произвольно перенесены затем на весь Космос. Согласно концепции "Большого взрыва", Вселенная возникла из одной точки, радиусом равной нулю, но с плотностью равной бесконечности (рис. 63, 64). Что это за точка, именуемая сингулярностью, каким образом из ничего появляется вся неисчерпаемая Вселенная и что находится за пределами сингулярности - об этом сторонники и пропагандисты данной гипотезы умалчивают. "Большой взрыв" произошел 10-20 миллиардов лет назад (точный возраст зависит от величины постоянной Хаббла, вводимой в соответствующую формулу). Эта величина, в свою очередь, может иметь различные значения в зависимости от методов, применяемых для измерения расстояния от Земли до галактик.

В целом же трезвый подход к квазикосмистским умозрениям типа "Большого взрыва" хорошо выразил известный шведский физик и астрофизик, лауреат Нобелевской премии Х. Альвен. Отнеся данную гипотезу к разряду математических мифов и отмечая возрастание фанатичной веры в него, он пишет: "...Эта космологическая теория представляет собой верх абсурда - она утверждает, что вся Вселенная возникла в некий определенный момент подобно взорвавшейся атомной бомбе, имеющей размеры (более или менее) с булавочную головку. Похоже на то, что в теперешней интеллектуальной атмосфере огромным преимуществом космологии "Большого взрыва" служит то, что она является оскорблением здравого смысла: credo, quia absurdum ("верую, ибо это абсурдно")! Когда ученые сражаются против астрологических бессмыслиц вне стен "храмов науки", неплохо было бы припомнить, что в самих этих стенах подчас культивируется еще худшая бессмыслица".

В рамках теории "Большого взрыва" отрицается вечность и бесконечность Вселенной, так как Вселенная имела начало во времени и по прошествии даже максимального срока в 20 миллиардов лет успела расшириться (раздуться) на ограниченное расстояние. Что находится за пределами радиуса расширяющейся Вселенной - тоже запретная тема для обсуждения. Обычно отделываются ничего не объясняющими утверждениями, смысл которых примерно следующий: Вселенная такова, потому что это вытекает из математических формул. В частности, сингулярность получается путем чисто математических преобразований и затем проецируется на космическую реальность. Вообще объектом релятивистской космологии являются предельно абстрактные модели, опирающиеся на сложнейший математический аппарат. При этом сначала решаются уравнения или доказывается теорема, а затем уже решается вопрос о том, каким образом следует скорректировать прежнее, не менее абстрактное математическое описание Космоса или, быть может, заменить старую космологическую модель на новую.

С полной очевидностью он обнаруживается и в истории с космологической сингулярностью. Впервые релятивистская идея расширяющейся Вселенной была сформулирована и математически обоснована российским ученым А. А. Фридманом в двадцатые годы. Его ученик Дж. Гамов рассчитал в конце сороковых годов модель горячей взрывающейся Вселенной, положив начало концепции "Большого взрыва". Но широкое распространение и внедрение эта теория получила лишь с середины 1960-х годов.

Вот как излагает историю вопроса С. Хокинг - один из наиболее авторитетных современных ученых, внесший большой личный вклад в развитие и распространение релятивистской космологии (ныне Хокинг руководит той самой кафедрой в Кембриджском университете, которую когда-то возглавлял Ньютон, - свидетельство наивысшего признания в научном мире). Отправной точкой размышлений Хокинга послужила теория другого английского математика и физика - Р. Пенроуза. Обосновывая начало Вселенной во времени и исходя из поведения световых конусов в общей теории относительности, Пенроуз математически показал, что когда звезда сжимается под действием собственных сил гравитации, она ограничивается областью, поверхность которой в конце концов сжимается до нуля. А раз поверхность этой области сжимется до нуля - следовательно, то же самое должно происходить и с ее объемом. Все вещество звезды будет сжато в нулевом объеме, так что ее плотность и кривизна пространства-времени станут бесконечными. В данной ситуации и возникает сингулярность, выведенная исключительно математическим путем в рамках теперь уже классической теоремы Пенроуза 33.

В 1965 году Хокинг познакомился с теорией Пенроуза и решил распространить ее на всю Вселенную, изменив при этом направление времени на обратное так, чтобы сжатие перешло в расширение. Другими словами, в математических уравнениях был заменен знак, что позволило ввести новую модель Большого Космоса, совмещенного с "Большим взрывом", точкой отсчета которого стала сингулярность. Спустя пять лет Хокинг опубликовал на эту тему работу уже совместно с Пенроузом 34. Вот, собственно, и вся подоплека господствующей в настоящее время модели Вселенной, которая в дальнейшем уточнялась в деталях, но не в принципе.

Показательно, что теория целиком и полностью родилась "на кончике пера" и соткана из тончайшей математической паутины. Ее возможное соответствие космической реальности целиком и полностью зиждется на энтузиазме и активности авторов, поддерживающих друг друга и поддерживаемых не менее дружно всеми возможными информационными средствами. В действительности ничего, кроме искусной комбинации математических отношений, существующих в двух вариантах - либо в голове теоретика, либо в письменном или напечатанном виде, авторы "взрывотворящих" космологических гипотез предложить не могут.

Тем не менее разработка концепции "Большого взрыва" происходила в ускоренном режиме. Не связанные какими бы то ни было ограничениями, теоретики дали полную волю своему воображению. Особенно их привлекали краевые значения: что было в самом начале и что ждет их детище в самом конце. Проблема "начала" породила необозримый поток публикаций, включая быстро завоевавшие популярность монографии, такие, к примеру, как переведенная на многие языки книга американского физика, лауреата Нобелевской премии Стивена Вайнберга "Первые три минуты: Современный взгляд на происхождение Вселенной". Здесь, так сказать, посекундно расписано, как вела себя материя, возникшая из ничего, в первые три минуты своего существования.

Но посекундного расписания оказалось мало. Стали разрабатывать модели (повторим, - сугубо абстрактно-математические), позволяющие представить, что было (точнее - "было бы, если бы было") со Вселенной в первые десятые и даже сотые доли секунды. Особую известность получила так называемая "инфляционная модель" Вселенной, разработанная российским космологом А. Д. Линде. Ее популярность и быстрое признание были обусловлены тем, что с помощью новых математических допущений удалось преодолеть возникшие противоречия между двумя теоретическими "китами" - космологией и физической теорией элементарных частиц.

Специалисты по теории элементарных частиц давно обращали внимание на неясные моменты космологии и задавали вопросы, которые казались почти метафизическими. Что было до начала расширения Вселенной? Почему Вселенная однородна и изотропна? Почему разные ее части, далеко удаленные друг от друга, так похожи, хотя формировались независимо? Поначалу казалось, что ответы на эти вопросы выходят за рамки целей и возможностей науки. Именно поэтому такой большой интерес вызвала предложенная Линде теория инфляционной, раздувающейся, Вселенной, в которой удалось ответить на большую часть приведенных вопросов. Общая черта различных вариантов инфляционной теории - существование стадии очень быстрого (экспоненциального) расширения Вселенной в вакуумоподобном состоянии с огромной плотностью энергии. Эта стадия и называется стадией инфляции. После нее вакуумоподобное состояние распадается, образующиеся при этом частицы взаимодействуют друг с другом, устанавливается термодинамическое равновесие, и лишь вслед за этим Вселенная начинает эволюционировать согласно стандартной модели "горячей Вселенной". В типичных моделях инфляции стадия раздувания продолжается всего 10-35 с, но за это время раздувающиеся области Вселенной успевают увеличить свой размер в 10000000000 - 1010 раз 35.

Вдохновленный "инфляционным подходом", Стивен Хокинг решил довести ультрарелятивистскую модель "Большого взрыва" до логического конца и ответить на весьма щекотливый вопрос: что же станет со Вселенной, когда она завершит эволюцию, предписанную математическими уравнениями. Ответ обескураживает своей бесхитростной простотой: она опять превратится в сингулярность, то есть в точку с нулевым радиусом. Хокинг даже припугивает: "Сингулярности не будет лишь в том случае, если представлять себе развитие Вселенной в мнимом времени" 36. Вот так: либо соглашайся с сингулярностью, либо будешь жить в мнимом времени! Ужасная просто перспектива! Хорошо еще, что она существует только в разыгравшемся теоретическом воображении, а мнимое время - такая же математическая абстракция, как и сингулярность.

Итак, модель "Большого взрыва" - всего лишь одна из возможных воображаемых конструкций, плод игры теоретической мысли. Воистину прав был Максимилиан Волошин, который, точно предвидя грядущий теоретический "беспредел", писал:

Мы, возводя соборы космогоний,

Не внешний в них отображаем мир,

А только грани нашего незнанья...

Не менее показательно и другое. Гипотетические расчеты релятивистов относительно вероятного возраста расширяющейся или раздувающейся модели Вселенной постоянно вступают в противоречия и оказываются несовместимыми с расчетами, полученными другими методами и в других отраслях знания. В частности, это касается химического возраста звезд и геологического возраста Земли, если наложить имеющиеся и научно обоснованные данные на релятивистскую шкалу времени. И расчетный возраст Земли, превышающий по современным геофизическим данным 10 миллиардов лет, и измерения изотропного возраста метеоритов не вписываются в релятивистские временные параметры Вселенной, предусматривающие ее начало в результате Большого взрыва, а по существу опровергают их. Так, возраст горных пород, полученных в Кольской сверхглубокой скважине, оценивается в 13 миллиардов лет. Или другой факт. Еще в 1980-е годы был открыт квазар, свет от которого по расчетам астрономов идет до земного наблюдателя более 60 миллиардов лет*. Значит, столько же существует и сам квазар, который никак не вписывается в прокрустово ложе гипотезы "Большого взрыва". Значит, не менее указанного срока существует и данный участок Вселенной. И сама Вселенная!

Сам же Хокинг, когда он попытался внести коррективы в первоначальные представления о сингулярности, не встретил никакой поддержки в кругу единомышленников: джин, как говорится, был выпущен из бутылки. Это наглядно демонстрирует простой факт: с одной стороны, самые строгие математические выводы в любое время можно менять на диаметрально противоположные (как это и было проделано Хокингом: в теореме Пенроуза направление времени было изменено на обратное, а в дальнейшем было введено понятие мнимого времени); с другой стороны, ученый мир волен принимать или не принимать даже самые безукоризненные математические выкладки. (Вот оно лишнее подтверждение применительно к современной ситуации в науке известного тезиса Н.Ф. Федорова о "небратском" отношении между учеными, для преодоления которого необходимо овладение принципами "космической этики".)

Подобная "методология", естественно, чревата полным беспределом. Так, попытка описать пространство вокруг вращающейся "черной дыры" с помощью эллипсоидальной системы координат (так называемое решение Керра, допускающее бесконечно большое число вселенных прошлого и будущего) - расчеты проделаны все тем же Пенроузом и оформлены им в виде наглядных диаграмм - и экстраполяция полученных выводов на окружающий мир приводит к следующей картине Вселенной. "Представим себе, например, космонавта, вылетевшего с Земли и нырнувшего в вращающуюся или заряженную черную дыру. Немного пространствовав там, он обнаружит Вселенную, являющуюся его же собственной, только на 10 минут более ранней во времени. Войдя в эту более раннюю Вселенную, он обнаружит, что все обстоит так, как было за несколько минут до его отправления. Он может даже встретить самого себя, полностью готового к посадке в космический корабль. Встретив самого себя, он может рассказать себе же, как он славно попутешествовал. Затем, вдвоем с самим собой, он может... снова повторить тот же полет!".

Попытки критически осмыслить подобные допущения или выдвинуть контраргументы наталкиваются нередко на далеко не научное противодействие. Об этом говорят многие западные авторы. Американский астроном Дж. Бербидж попытался проанализировать причины странной популярности гипотезы "Большого взрыва", в основе которой лежат непроверенные предположения. Прежде всего ошеломил темп ее распространения: на Западе конференции, посвященные данной космологической модели, проводятся в среднем раз в месяц. В учебниках релятивистская модель излагается как доказанная раз и навсегда и единственно возможная. Опубликовать в научном издании альтернативную статью практически невозможно из-за наличия жесточайшей цензуры. Сторонником альтернативных подходов чрезвычайно трудно получить финансовую поддержку (в то время как для релятивистов она идет широким потоком) и даже время для наблюдений на телескопе. Так, известному астроному Х. Арпу было отказано в наблюдениях крупнейшими американскими обсерваториями, поскольку целью его исследований были поиски фактов против релятивистской космологической модели. А ведь Х. Арпу принадлежит заслуга в открытии двойных галактик, связанных друг с другом туманными струями. При этом красное смещение у двух взаимосвязанных объектов оказалось совершенно различным, что, естественно, не вписывалось ни в гипотезу "Большого взрыва", ни даже в истолкование факта красного смещения.

Свободное оперирование теоретическими конструкциями, без их сопряжения с научной (а в данном случае - космистской) методологией приводит к отрыву от материальной действительности результатов математических операций и как следствие - к самым парадоксальным и невероятным выводам. Подтверждением тому может служить гипотеза "фридмонов" М.А. Маркова. Согласно этой гипотезе, "Вселенная в целом может оказаться микроскопической частицей. Микроскопическая частица может содержать в себе целую Вселенную"**. Подобные микроскопические объекты, "внутри" которых могут находиться звездные системы, галактики, цивилизации, получили название "фридмонов" (в честь А. А. Фридмана). Выдвигаемые положения наглядно иллюстрируются с помощью знаменитого "демона Максвелла" - гипотетического существа, способного оказаться в любой невероятной ситуации и описать ее. Вот что увидел бы такой "демон" при полете через Вселенную, представляющую собой "фридмон". Двигаясь от центра нашей Вселенной, "максвелловский демон", пройдя ультрамакроскопические расстояния между галактиками, в конце концов оказался бы в некоторой области, где наш мир с помощью микроскопической горловиной сферы связан с другим, "внешним" по отношению к нашему, пространством. Но если бы любознательный "демон" протиснулся сквозь горловину за пределы "фридмона" и взглянул со стороны на нашу Вселенную, то с удивлением обнаружил бы, что извне она представляется микроскопическим объектом.

Вывод о макро-микроскопической Вселенной базируется на строгом и оригинальном математическом расчете. Но значит ли это, что предлагаемое решение и является абсолютной "формулой мира", раскрывающей самые что ни на есть фундаментальные закономерности движущейся материи? Ничуть. Упомянутая формула является одной из бесчисленного множества возможных и столь же равноправных моделей и формул, каждая из которых будет описывать вполне определенную (новую в каждом отдельном случае) совокупность объективных природных отношений.

В модели "фридмона" учитывается соотношение полузамкнутой неевклидовой сферы с различными величинами ее радиуса, а также с гравитационной и световой константами, полными электрическим зарядом системы и массой вещества, содержащегося в границах описываемой Вселенной. При определенных значениях заданных величин, и в частности - радиуса сферы, ее поверхность может увеличиваться от нуля до некоторого максимума, а затем уменьшаться, стягиваясь в одну точку. Неудивительно, что получаются именно такие результаты. Отношения математических величин нередко обращаются в нуль. Точно так же отношение двух бесконечно больших (в математическом смысле) Евклидовых сфер может реализоваться в одной бесконечно малой (опять-таки в математическом смысле) точке: например, при соприкосновении таких сфер. Налицо объективное отношение, при котором бесконечно большое переходит в бесконечно малое (или наоборот) и онтологию которого легко можно понять, используя философские космистские принципы. Такую геометрическую модель можно наполнить и определенным физическим содержанием. Но даст ли это право обращать ее в узду для бесконечной Вселенной? Нет, потому что в конкретные отношения, с какой бы степенью полноты они ни были бы познаны, нельзя втиснуть неисчерпаемые материальные отношения. Нет, потому что бесконечная и вечно движущаяся Вселенная не сводится к одним лишь отношениям. Вместе с тем понимание сути отношений, присущих им объективных закономерностей, включая и закономерности их отображения в научных понятиях и теориях, помогают составить правильное представление о материальной действительности и на этой основе построить единую научную картину мира.

В 60-е годы нынешнего столетия было обнаружено микроволновое фоновое излучение, равномерно заполняющее все космическое пространство. Оно представляет собой радиоволны миллиметрового диапазона, распространяющиеся по всем направлениям. Таинственное явление было открыто американскими радиоастрономами Арно Пензиасом и Робертом Вильсоном, за что оба были удостоены Нобелевской премии. "Фотонный газ" равномерно заполняет всю Вселенную. Его температура близка к абсолютному нулю - около 3К. Зато энергия, сосредоточенная в нем, - превышает световую энергию всех звезд и галактик, вместе взятых, за все время их существования.

Новооткрытое явление немедленно было истолковано как температурно ослабленное излучение, образовавшееся вместе со всей Вселенной в результате Большого взрыва 10-20 миллиардов лет тому назад. За истекшее время эти, по-другому называемые еще "реликтовыми", фотоны якобы успели остыть до температуры около трех градусов по шкале Кельвина. "Нормальными" и "ослабленными" световыми квантами наполнено все космическое пространство: на каждый протон приходится несколько десятков миллионов фотонов. Так что же представляет собой это загадочное "реликтовое" излучение? И можно ли говорить о "реликтовых" фотонах? Представляется, что особого внимания на сей счет заслуживает мнение известного специалиста в области космической проблематики профессора Василия Петровича Селезнева, действительного члена Академии космонавтики им. К. Э. Циолков-ского, руководителя секции общей физики Московского общества испытателей природы.

Существование фонового излучения, равномерно заполняющего все космическое пространство, - считает академик, - является экспериментально установленным фактом. Объяснить физическую природу такого излучения оказалось весьма трудно. Интуиция некоторых исследователей не без основания направила на поиски причин в малоизученную область знания - космологию, связанную с происхождением всей нашей Вселенной. Однако в этом поиске почему-то возобладал односторонний подход: во внимание берется только одна предполагаемая причина возникновения "реликтового" излучения (так называемый "Большой взрыв") и не рассматриваются другие альтернативные решения. Вполне естественно, сам по себе "Большой взрыв", воспроизводящий якобы механизм зарождения Вселенной из точки нулевого объема (то есть из "ничего"), не выдерживает никакой критики. Поэтому его нельзя считать действительной причиной фонового излучения. Более обоснованно зарождение и распространение фонового излучения можно объяснить, рассматривая модель вращающейся Вселенной.

Накопленный человечеством научный и практический опыт в области земной и небесной механики показывает, что движения планет относительно Солнца, самого Солнца относительно Галактики, а также множества звездных систем и галактик относительно друг друга осуществляются под действием двух видов сил - сил гравитационного притяжения тел (сил всемирного тяготения) и сил инерции масс этих тел. Если бы силы инерции отсутствовали, то все небесные тела под действием всемирного тяготения слились бы в единое "тело". Однако, как известно из повседневного опыта, Луна не падает на Землю, Земля не падает на Солнце и т. д., а все они движутся относительно друг друга по различным орбитам, сохраняя в любой момент времени условие динамического равновесия сил гравитационного притяжения и сил инерции. Этот всеобщий для всей Вселенной закон механики приводит к тому, что галактики вращаются не только вокруг своих центров масс, но и относительно друг друга, а следовательно, вращается и вся Метагалактика. Подобное вращение звездного неба с угловой скоростью порядка 10-5 угловой секунды в год наблюдается экспериментально. Где бы ни находился наблюдатель в пределах Метагалактики, он мог бы обнаружить такое вращение звездного неба экспериментальным путем. Таким образом, и земной житель тоже является участником вращения Метагалактики. Что же он увидит, рассматривая излучение далеких звезд и галактик?

Представим пространство за пределами Метагалактики, содержащее огромное множество звезд и галактик, связанных между собой силами всемирного тяготения. Это пространство вращается как единое целое, наподобие огромного дискообразного тела, благодаря чему силы всемирного тяготения уравновешиваются силами инерции небесных тел (центробежные силы), не давая возможности этим телам слиться в одно общее тело. В какой-то произвольной части этого пространства находится наблюдатель (точка А), а на расстоянии R от него - небесное тело В, излучающее во все стороны потоки света (рис. 65).

Вследствие вращения Метагалактики с угловой скоростью w линия АВ также вращается с той же угловой скоростью. Окружная скорость V точки В относительно точки А будет равна V=wR, а направление вектора будет перпендикулярно линии АВ. Если небесное тело излучает свет во все стороны со скоростью света С, то в направлении наблюдателя скорость потока фотонов должна складываться. Следовательно, скорость светового потока С1 будет меньше скорости излучения С, что вызовет доплеровский эффект, сопровождаемый красным смещением в спектре света, воспринимаемого наблюдателем. В рассматриваемом примере расстояние АВ не меняется, а причиной наблюдаемого красного смещения выступает вращение Метагалактики. Чем больше R, тем значительнее возрастает поперечная составляющая скорости V (при постоянной величине угловой скорости w).

Можно представить себе и предельное значение R, при котором скорость V будет достигать величины скорости света С. В этом случае С1=0, и свет, излучаемый небесным телом, не будет достигать наблюдателя. По существу, из этого условия может быть найдена граница видимой части Метагалактики, далее которой наблюдатель не сможет увидеть небесные тела, поскольку свет от них не доходит до него. Учитывая значение w=10-4 угловой секунды в год и V=С, получим предельное расстояние R=Rпред до границ видимой части Метагалактики порядка 1,8Ч1028 см (около

19 миллиардов световых лет). В данной связи разрешается и так называемый фотометрический парадокс, согласно которому ночное небо в случае бесконечного числа звезд должно выглядеть как раскаленное Солнце. В действительности согласно рассмотренной модели в пределах видимой части Метагалактики наблюдается ограниченное число звезд и галактик, вследствие чего ночное небо слабо освещено.

В рассмотренной модели вращающейся Вселенной существуют периферийные области, близкие к границам видимой части Метагалактики, в которых свет от небесных тел доходит до наблюдателя с весьма малой скоростью. Характеристики подобных световых потоков, идущих со всех сторон от периферийных областей Метагалактики, полностью соответствуют "реликтовым" излучениям, обнаруженным в космическом пространстве. Таким образом, для выяснения природы излучения достаточно рассмотреть особенности распространения света в Метагалактике, основываясь на известных законах небесной механики 37.

Профессор Селезнев, несомненно, прав. Остается сделать общий вывод. При решении актуальных проблем современной науки только целостное философско-космистское осмысление обеспечивает глубоко интегрированное проникновение в саму сущность объективных закономерностей, выражающихся в первую очередь в неразрывном единстве макро- и микрокосмических аспектов природной и социальной действительности. В общем и целом это совпадает с основными направлениями развития современного естествознания, связанными с естественно-математическим обоснованием таких концептуальных феноменов, как единая теория поля, "великое объединение" фундаментальных взаимодействий, различные модели физического вакуума и др. При этом философские принципы космизма вооружают исследователей апробированной методологией, помогающей в определении правильности выбора теоретических приоритетов.

ВПЕРЁД - К АБСУРДУ!

"Большого взрыва" современным теоретикам показалось мало, чтобы окончательно запутать картину Вселенной. Именно так! Раньше наука стремилась к простоте понимания мира. Теперь же ее идеал - запутанный клубок проблем, порождающих другие проблемы. Так, в качестве развития экзотических релятивистских моделей стали предлагаться не менее экстравагантные их продолжения и следствия. Одним из них явилась теория так называемых космических струн. Послушаем одного из ее разработчиков и пропагандистов.

Вселенная довольно неоднородна: звезды собраны в галактики, а галактики в свою очередь образуют скопления. С течением времени Вселенная становится все более клочковатой по мере того, как гравитационная сила скоплений галактик притягивает галактики из соседних областей. В современных теориях образования галактик предполагается, что в прошлом Вселенная была гораздо более однородной, чем сейчас, и что все галактики и скопления галактик выросли из небольших флуктуаций, существовавших на фоне почти однородного распределения вещества. Следствия из этих теорий изучались очень подробно, но среди множества вопросов выделяется один фундаментальный: что это за флуктуации и откуда они появились?

Обратимся к космическим струнам - экзотическим невидимым образованиям, порожденным теориями элементарных частиц. Струны - это нити, оставшиеся от вещества только что родившейся Вселенной. Они невероятно плотные и подвижные: перемешаются со скоростью света и искривляют пространство вокруг себя. Появившиеся в первую секунду от начала расширения Вселенной, струны образуют запутанные клубки, при бесконечном растяжении которых возникают петли. Эти петли энергично колеблются и в процессе колебаний постепенно рассеивают свою энергию.

Никто не может с уверенностью сказать, что струны есть, но если они существуют, то это, как полагают многие физики, могло бы объяснить клочковатость распределения вещества во Вселенной. Очень массивные петли могли бы создавать поменяем знак на противоположный, то есть, скажем, "+" на "-", галактики и скопления галактик. Однако такие петли долго не существуют, так что, если даже когда-то во Вселенной их было много, к настоящему времени большинство из них исчезло.

Менее массивные струны могли бы существовать и до сих пор, но пока они не обнаружены. И все же, приложив достаточно усилий и использовав самую чувствительную аппаратуру, астрономы могли бы опровергнуть или подтвердить гипотезу о существовании космических струн в течение нескольких лет. Поиск космических струн связан с большими ожиданиями, поскольку их обнаружение откроет путь к основам строения вещества и тайне рождения Вселенной. Чтобы разобраться в этом, необходимо рассмотреть само понятие струн как в физике элементарных частиц, так и в космологии.

Поскольку Вселенная, согласно релятивистской теории струн, родилась из нулевой точки не менее 15 миллиардов лет назад в результате Большого взрыва, постольку она продолжает расширяться и в настоящее время: далекие галактики движутся от Земли с очень большими скоростями. Привлекая данные астрономических наблюдений и законы физики элементарных частиц, ученые могут восстановить историю Вселенной в прошлом вплоть до момента, когда возраст Вселенной составлял долю секунды от начала Большого взрыва. Тогда не существовало галактик, звезд и даже атомов. Вселенная представляла собой просто гигантский плотный горячий шар из таких частиц, как электроны и фотоны.

Природа частиц и их взаимодействие определяются вакуумом. Для физиков вакуум - это состояние с минимальной энергией, достигаемое при отсутствии каких-либо частиц. Связь между элементарными частицами и вакуумом подобна связи между звуковыми волнами и веществом, в котором эти волны распространяются: типы волн и скорость их распространения различны в разных средах. Поскольку характеристики вакуума не всегда были неизменными, свойства и взаимодействия элементарных частиц также менялись.

Вначале вакуум обладал неимоверно большой энергией и характеризовался высокой степенью симметрии. Другими словами, не существовало различия между силами взаимодействия элементарных частиц. Электромагнитные, слабые и сильные ядерные силы проявлялись всего лишь как части единого взаимодействия. В настоящее время энергия вакуума равна нулю и фундаментальные силы различаются по величине и типу, так что очень мало осталось от их первоначального единства. Каким же образом была нарушена исходная симметрия?

По мере того как Вселенная расширялась и охлаждалась после Большого взрыва, вакуум проходил через быструю последовательность изменений, называемых фазовыми переходами. Наиболее известны фазовые переходы, которые происходят в воде при ее охлаждении, когда она переходит из пара в жидкость и, наконец, в лед. Фазовые переходы можно описывать также в терминах нарушения симметрии: они часто переводят симметричные состояния в несимметричные. Например, кристалл - менее симметричное состояние по сравнению с жидкостью, поскольку жидкость "выглядит одинаковой" во всех направлениях, тогда как в кристаллической решетке различные направления не эквивалентны.

Никто не знает точно, сколько фазовых переходов произошло в "молодом" вакууме. Однако все они должны были протекать в течение первой секунды от начала расширения Вселенной. Так же, как и фазовые переходы в обычных средах, космологические фазовые переходы приводят к образованию дефектов. Внутри дефектов симметрия не нарушена, и ранний, более молодой вакуум остался в них как в ловушках. Различные теории элементарных частиц предполагают разные виды дефектов. Согласно некоторым теориям, дефекты должны существовать в виде поверхностей, в других - предсказываются линии или точки. Эти типы дефектов называют соответственно стенками доменов, струнами и монополями.

Таким образом, космические струны являются всего лишь одним из трех возможных типов "разрывов" в свойствах вакуума. Почему же в теории образования галактик выделяются именно они? Как это ни странно, но одна из причин заключается в том, что струны не так ярко себя проявляют, как другие типы дефектов. В соответствии с эйнштейновским соотношением между массой и энергией высокоэнергетический вакуум должен обладать огромной массой. Поэтому дефекты могут оказывать чрезвычайно сильное влияние на эволюцию Вселенной. В настоящее время одна-единственная стенка домена, простирающаяся в современной Вселенной, может иметь гораздо большую массу, чем все вещество во Вселенной вместе взятое, и привести к большему окучиванию галактик, чем это есть на самом деле. Хотя одиночный монополь может "ускользнуть" от регистрации, теории предсказывают существование монополей в огромном количестве. Если бы они существовали, то Вселенная буквально "кишела" бы ими, и не заметить их было невозможно. Тем не менее ни стенки доменов, ни монополи не обнаружены.

Космические струны также никто не видел, но физики и не считают, что их можно непосредственно наблюдать. Первая работа, посвященная космическим струнам, была написана в середине 1970-х годов английским космологом Т. Кибблом. Он исследовал, как струны могли бы образоваться в ранней Вселенной, и в работе 1976 года обсуждал некоторые вопросы их эволюции. В России данную проблему активно разрабатывал Я.Б. Зельдович. Он считал, что с помощью струн можно было бы объяснить клочковатость распределения вещества во Вселенной. Физические свойства струн оказались очень привлекательными и уникальными. Теория космических струн быстро стала как бы центром притяжения для физиков, подобно тому как сами струны якобы являются центром притяжения для звезд и галактик. На читателей обрушилась целая лавина работ по космическим струнам, хотя до сих пор не найдено прямое эмпирическое доказательство их существования. Но даже при отсутствии эмпирических данных физики смогли воссоздать более чем странные контуры свойств космических струн. Некоторые их свойства зависят от конкретной теории элементарных частиц, предсказывающей эти свойства, тогда как другие особенности являются общими для всех теорий.

Космические струны представляют собой тонкие трубки из симметричного высокоэнергетического вакуума. У них нет концов, они либо образуют замкнутые кольца, либо простираются до бесконечности. С точки зрения физики сущность струн определяется энергией вакуума, который в них заключен. Струны с наиболее симметричным вакуумом, в котором все виды взаимодействий - сильное, слабое и электромагнитное - объединены в одно, наиболее тонкие и массивные. Это - самые интересные объекты для космологии, поскольку именно они могли бы приводить к образованию галактик. Толщина этих струн равна примерно 10-30 см. Они поразительно массивны: один сантиметр такой струны должен весить 1016 тонн. Натяжение в струнах под стать их массе. Это натяжение заставляет замкнутые петли из струн энергично осциллировать со скоростью, близкой к скорости света. Например, кольцо длиной в световой год совершит одно колебание за время, чуть большее года. (Мера длины один световой год - это расстояние, которое проходит свет за один год).

Итак, еще одна экстравагантная гипотеза. Но сколь бы ни выглядела правдоподобной и привлекательной изложенная выше в общих чертах ультрасовременная концепция космических струн, следует относиться к ней трезво, отдавая полный отчет, что перед нами всего лишь очередное (старое, как мир!) овеществление математических отношений (то есть систематизированных в виде формул абстрактных понятий), наподобие уже рассмотренной выше субстанциализированной кривизны.


КАК РОЖДАЮТСЯ, ЖИВУТ И УМИРАЮТ ЗВЕЗДЫ

Если вдруг задаться вопросом: какие небесные объекты более всего подходят на роль символа Вселенной, то, скорее всего, первыми на ум придут звезды. Именно их, по словам Эсхила, "владык лучистых неба", не сговариваясь, наверняка назовут многие люди - во все века, во всех народах. Крупнейшему древнеримскому мыслителю-стоику и драматургу Сенеке принадлежит не менее удачный образ. Он высказался так: если бы на Земле имелось только одно-единственное место, откуда бы наблюдались звезды, то туда непрерывным потоком отовсюду стекались бы люди.

Согласно естественно-научным представлениям, звезды - основной строительный материал Мироздания. Давно просчитано, что почти 97-98% всего вещества Вселенной сосредоточено в звездах. Таким образом, они - главные хранители физической массы. Остальное вещество приходится на межзвездную газо-пылевую среду, которая, как долгое время полагали, является либо продуктом, порожденным звездами, либо материей, из которой образовались небесные тела. Осталось только выяснить, как все это увязано с "Великой пустотой" - физическим вакуумом.

В начале книги уже приводились слова Канта, назвавшего звездное небо над нами одним из двух величайших чудес света (второе - моральный закон внутри нас).

Полночных солнц к себе нас манят светы...

В колодцах труб пытливый тонет взгляд.

Алмазный бег вселенные стремят:

Системы звезд, туманности, планеты,

От Альфы Пса до Веги и от Бэты

Медведицы до трепетных Плеяд -

Они простор небесный бороздят,

Творят во тьме свершенья и обеты.

О, пыль миров! О, рой священных пчел!

Я исследил, измерил, взвесил, счел,

Дал имена, составил карты, сметы...

Но ужас звезд от знанья не потух.

Мы помним все: наш древний, темный дух,

Ах, не крещен в глубоких водах Леты!


Каталог: files
files -> Истоки и причины отклоняющегося поведения
files -> №1. Введение в клиническую психологию
files -> Общая характеристика исследования
files -> Клиническая психология
files -> Валявский Андрей Как понять ребенка
files -> К вопросу о формировании специальных компетенций руководителей общеобразовательных учреждений в целях создания внутришкольных межэтнических коммуникаций
files -> Русские глазами французов и французы глазами русских. Стереотипы восприятия


Поделитесь с Вашими друзьями:
1   ...   8   9   10   11   12   13   14   15   ...   42


База данных защищена авторским правом ©znate.ru 2019
обратиться к администрации

    Главная страница